Neuromuscular Activation and Symmetry in Isometric Squats: Comparing Stable and Unstable Surfaces
Abstract
1. Introduction
2. Material and Methods
2.1. Subjects
2.2. Procedures
2.3. Exercises
2.4. Electromyography Measurements
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Snarr, R.L.; Hallmark, A.V.; Nickerson, B.S.; Esco, M.R. Electromyographical Comparison of Pike Variations Performed with and Without İnstability Devices. J. Strength Cond. Res. 2016, 30, 3436–3442. [Google Scholar] [CrossRef]
- Behm, D.G.; Anderson, K.G. The Role of İnstability with Resistance Training. J. Strength Cond. Res. 2006, 20, 716–722. [Google Scholar]
- Behm, D.G. Neuromuscular İmplications and Applications of Resistance Training. J. Strength Cond. Res. 1995, 9, 264–274. [Google Scholar]
- Kibele, A.; Behm, D.G. Seven Weeks of İnstability and Traditional Resistance Training Effects on Strength, Balance and Functional Performance. J. Strength Cond. Res. 2009, 23, 2443–2450. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Choi, B.R. Correlation Between the Soleus and Quadriceps Femoris Muscles During Squat Exercises on Various Support Surface in Healthy Adult Males. J. Korean Phys. Ther. Sci. 2024, 31, 89–99. [Google Scholar] [CrossRef]
- Croisier, J.L.; Ganteaume, S.; Binet, J.; Genty, M.; Ferret, J.M. Strength imbalances and prevention of hamstring injury in professional soccer players: A prospective study. Am. J. Sports Med. 2008, 36, 1469–1475. [Google Scholar] [CrossRef]
- Wahl, M.J.; Behm, D.G. Not all instability training devices enhance muscle activation in highly resistance-trained individuals. J. Strength Cond. Res. 2008, 22, 1360–1370. [Google Scholar] [CrossRef]
- Anderson, K.; Behm, D.G. Trunk muscle activity increases with unstable squat movements. Can. J. Appl. Physiol. 2005, 30, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Topçu, H.; Arabacı, R.; Güngör, A.K.; Birinci, Y.Z.; Pancar, S.; Şekir, U. Muscle Activity of Core Muscles During Plank Exercise on Different Surfaces. Turk. J. Sport. Exerc. 2022, 24, 298–305. [Google Scholar]
- Babakhani, F.; Hatefi, M. Comparing the Electromyography Activity of Core Muscles During Side Plank Exercise on Stable and Unstable Surfaces. J. Sport. Biomech. 2019, 5, 102–111. [Google Scholar] [CrossRef]
- Snarr, R.L.; Esco, M.R. Electromyographical Comparison of Plank Variations Performed with and Without Instability Devices. J. Strength Cond. Res. 2014, 28, 3298–3305. [Google Scholar] [CrossRef]
- Melo, B.; Pirauá, A.; Beltrão, N.; Pitangui, A.C.; Araújo, R. A Utilização de Superfície Instável Aumenta a Atividade Eletromiográfica Dos Músculos Da Cintura Escapular No Exercício Crucifixo. Rev. Bras. Atividade Física Saúde. 2014, 19, 342–350. [Google Scholar] [CrossRef]
- Luk, J.T.C.; Kwok, F.K.C.; Ho, I.M.K.; Wong, D.P. Acute Responses of Core Muscle Activity during Bridge Exercises on the Floor vs. the Suspension System. Int. J. Environ. Res. Public. Health. 2021, 18, 5908. [Google Scholar] [CrossRef]
- Kim, S.J.; Kwon, O.Y.; Yi, C.H.; Jeon, H.S.; Oh, J.S.; Cynn, H.S.; Weon, J.H. Comparison of Abdominal Muscle Activity During a Single-Legged Hold in the Hook-Lying Position on the Floor and on a Round Foam Roll. J. Athl. Train. 2011, 46, 403–408. [Google Scholar] [CrossRef]
- Snarr, R.L.; Esco, M.R. Electromyographic Comparison of Traditional and Suspension Push-Ups. J. Hum. Kinet. 2013, 39, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Hwangbo, G.; Kim, M.K. The Effects of Ankle Joint Position in Various Lower Limb Ground States on the Activation of the Shoulder and Trunk Muscles during Push-up Exercises. J. Phys. Ther. Sci. 2012, 24, 411–414. [Google Scholar] [CrossRef]
- Lee, S.; Park, J.; Lee, D. Effects of Bridge Exercise Performed on an Unstable Surface on Lumbar Stabilizing Muscles According to the Knee Angle. J. Phys. Ther. Sci. 2015, 27, 2633–2635. [Google Scholar] [CrossRef] [PubMed]
- Byrne, J.M.; Bishop, N.S.; Caines, A.M.; Crane, K.A.; Feaver, A.M.; Pearcey, G.E.P. Effect of Using a Suspension Training System on Muscle Activation during the Performance of a Front Plank Exercise. J. Strength Cond. Res. 2014, 28, 3049–3055. [Google Scholar] [CrossRef] [PubMed]
- Czaprowski, D.; Afeltowicz, A.; Gebicka, A.; Pawłowska, P.; Kedra, A.; Barrios, C.; Hadała, M. Abdominal Muscle EMG-Activity during Bridge Exercises on Stable and Unstable Surfaces. Phys. Ther. Sport. 2014, 15, 162–168. [Google Scholar] [CrossRef]
- Imai, A.; Kaneoka, K.; Okubo, Y.; Shiina, I.; Tatsumura, M.; Izumi, S.; Shiraki, H. Trunk Muscle Activity during Lumbar Stabilization Exercises on Both a Stable and Unstable Surface. J. Orthop. Sports Phys. Ther. 2010, 40, 369–375. [Google Scholar] [CrossRef]
- Sousa, D.S.F.; de Farias, W.M.; de Amorim Batista, G.; de Oliveira, V.M.A.; Pirauá, A.L.T.; Beltrão, N.B.; Pitangui, A.C.R.; de Araújo, R.C. Activation of Upper Limb Muscles in Subjects with Scapular Dyskinesis during Bench-Press and Dumbbell Fly on Stable and Unstable Surfaces. J. Back. Musculoskelet. Rehabil. 2022, 35, 1289–1297. [Google Scholar] [CrossRef]
- Uribe, B.P.; Coburn, J.W.; Brown, L.E.; Judelson, D.A.; Khamoui, A.V.; Nguyen, D. Muscle Activation When Performing the Chest Press and Shoulder Press on a Stable Bench vs. a Swiss Ball. J. Strength Cond. Res. 2010, 24, 1028–1033. [Google Scholar] [CrossRef]
- Andrade, L.S.; Mochizuki, L.; Pires, F.O.; da Silva, R.A.S.; Mota, Y.L. Application of Pilates Principles Increases Paraspinal Muscle Activation. J. Bodyw. Mov. Ther. 2015, 19, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Lehman, G.J.; Gordon, T.; Langley, J.; Pemrose, P.; Tregaskis, S. Replacing a Swiss Ball for an Exercise Bench Causes Variable Changes in Trunk Muscle Activity during Upper Limb Strength Exercises. Dyn. Med. 2005, 4, 6. [Google Scholar] [CrossRef]
- Cristina, M.M.; Ursu, V.E.; Dragoș, O.; Mavritsakis, N. Recovery from Isolated Biceps Tendinitis Through Physiotherapy and Therapeutic Massage in Youth Team Sports Involving Ball Throwing. Balt. J. 2024, 37. [Google Scholar] [CrossRef]
- Buscà, B.; Aguilera-Castells, J.; Arboix-Alió, J.; Miró, A.; Fort-Vanmeerhaeghe, A.; Pena, J. Influence of the Amount of Instability on the Leg Muscle Activity during a Loaded Free Barbell Half-Squat. Int. J. Environ. Res. Public. Health 2020, 17, 8046. [Google Scholar] [CrossRef]
- Hyong, I.H.; Kang, J.H. Activities of the Vastus Lateralis and Vastus Medialis Oblique Muscles during Squats on Different Surfaces. J. Phys. Ther. Sci. 2013, 25, 915–917. [Google Scholar] [CrossRef]
- Souto Maior, B.; Simão, A.; Freitas De Salles, R.; Miranda, B.; Costa, H.; Brando, P. Neuromuscular activity during the squat exercise on an unstable platform. Braz. J. Biomot. 2009, 3, 121–129. [Google Scholar]
- McBride, J.M.; Cormie, P.; Deane, R. Isometric Squat Force Output and Muscle Activity in Stable and Unstable Conditions. J. Strength Cond. Res. 2006, 20, 915–918. [Google Scholar]
- McBride, J.M.; Larkin, T.R.; Dayne, A.M.; Haines, T.L.; Kirby, T.J. Effect of Absolute and Relative Loading on Muscle Activity During Stable and Unstable Squatting. Int. J. Sports Physiol. Perform. 2010, 5, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Gündoğan, B.; Aydın, E.M.; Sağlam, A.F. Muscle Activation During Squat on Different Surfaces. Pamukkale J. Sport. Sci. 2023, 14, 398–407. [Google Scholar] [CrossRef]
- Saeterbakken, A.H.; Fimland, M.S. Muscle force output and electromyographic activity in squats with various unstable surfaces. J. Strength Cond. Res. 2013, 27, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.H. Effects of Gastrocnemius Muscle Length On The Dynamic Balance And Antero-Posterior Pressure Distribution of Foot. J. Korea Acad. -Ind. Coop. Soc. 2019, 20, 150–157. [Google Scholar]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef] [PubMed]
- Slater, L.V.; Hart, J.M. Muscle Activation Patterns During Different Squat Techniques. J. Strength Cond. Res. 2017, 31, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, C.; Wang, F.C.; Forthomme, B.; Denoël, V.; Brüls, O.; Croisier, J.L. Normalizing Gastrocnemius Muscle EMG Signal: An Optimal Set of Maximum Voluntary Isometric Contraction Tests for Young Adults Considering Reproducibility. Gait Posture. 2020, 82, 196–202. [Google Scholar] [CrossRef]
- Andersen, V.; Fimland, M.S.; Brennset, O.; Haslestad, L.R.; Lundteigen, M.S.; Skalleberg, K.; Saeterbakken, A.H. Muscle Activation and Strength in Squat and Bulgarian Squat on Stable and Unstable Surface. Int. J. Sports Med. 2014, 35, 1196–1202. [Google Scholar] [CrossRef]
- Monajati, A.; Larumbe-Zabala, E.; Goss-Sampson, M.; Naclerio, F. Surface Electromyography Analysis of Three Squat Exercises. J. Hum. Kinet. 2019, 67, 73–83. [Google Scholar] [CrossRef]
- Aguilera-Castells, J.; Buscà, B.; Morales, J.; Solana-Tramunt, M.; Fort-Vanmeerhaeghe, A.; Rey-Abella, F.; Bantulà, J.; Peña, J. Muscle Activity of Bulgarian Squat. Effects of Additional Vibration, Suspension and Unstable Surface. PLoS ONE 2019, 14, e0221710. [Google Scholar] [CrossRef]
- Saein, A.M.; Kahrizi, S.; Boozari, S. Effects of Unstable Load and Unstable Surface Ontrunk Muscles Activation and Postural Control in Healthy Subjects. J. Biomech. 2024, 173, 112257. [Google Scholar] [CrossRef]
Muscles | S | GM | BB_DU | BB_FU | p | |
---|---|---|---|---|---|---|
VM | 50.09 ± 17.68 | 51.77 ± 16.44 | 52.63 ± 16.20 | 54.31 ± 17.66 | 0.409 | 0.052 |
VL | 40.96 ± 14.29 | 42.55 ± 13.33 | 42.55 ± 15.74 | 43.93 ± 17.06 | 0.332 | 0.060 |
MG | 7.21 ± 3.73 | 7.37 ± 3.87 | 7.96 ± 3.75 | 6.82 ± 2.93 | 0.423 | 0.050 |
LG | 7.76 ± 4.60 | 9.22 ± 6.28 | 8.64 ± 6.89 | 9.03 ± 5.87 | 0.357 | 0.056 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sağlam, A.F.; Aydın, E.M.; Koç, H.; Muntean, R.I.; Joksimovic, M.; Stefanica, V. Neuromuscular Activation and Symmetry in Isometric Squats: Comparing Stable and Unstable Surfaces. Symmetry 2025, 17, 1317. https://doi.org/10.3390/sym17081317
Sağlam AF, Aydın EM, Koç H, Muntean RI, Joksimovic M, Stefanica V. Neuromuscular Activation and Symmetry in Isometric Squats: Comparing Stable and Unstable Surfaces. Symmetry. 2025; 17(8):1317. https://doi.org/10.3390/sym17081317
Chicago/Turabian StyleSağlam, Ali Fatih, Erbil Murat Aydın, Hürmüz Koç, Raul Ioan Muntean, Marko Joksimovic, and Valentina Stefanica. 2025. "Neuromuscular Activation and Symmetry in Isometric Squats: Comparing Stable and Unstable Surfaces" Symmetry 17, no. 8: 1317. https://doi.org/10.3390/sym17081317
APA StyleSağlam, A. F., Aydın, E. M., Koç, H., Muntean, R. I., Joksimovic, M., & Stefanica, V. (2025). Neuromuscular Activation and Symmetry in Isometric Squats: Comparing Stable and Unstable Surfaces. Symmetry, 17(8), 1317. https://doi.org/10.3390/sym17081317