Formulae for Generalization of Touchard Polynomials with Their Generating Functions
Abstract
1. Introduction
2. Generalization of the Touchard Polynomials and Their Generating Function
2.1. Computational Formulas Involving Polynomials and
2.2. Relation Between Generating Function for Generalization of the Touchard Polynomials and Moment Generating Function for Probability Distribution
3. Identities Involving Generalization of the Touchard Polynomials, Finite and Infinite Sums and Also Other Special Numbers and Polynomials
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bell, E.T. Exponential Polynomials. Ann. Math. 1934, 35, 258–277. [Google Scholar] [CrossRef]
- Berndt, B.C. Ramajuan’s Notebook Part I; Springer: New York, NY, USA, 1985. [Google Scholar]
- Khristo Boyadzhiev, N. Exponential Polynomials, Stirling Numbers, and Evaluation of Some Gamma Integrals. Abstr. Appl. Anal. 2009, 2009, 168672. [Google Scholar] [CrossRef]
- Dattoli, G.; Germano, B.; Martinelli, M.R.; Ricci, P.E. Touchard like polynomials and generalized Stirling numbers. Appl. Math. Comput. 2012, 218, 6661–6665. [Google Scholar] [CrossRef]
- Kamarujjama, M.; Daud, S.; Husain, S. Bell based Apostol-Bernoulli polynomials and its properties. Int. J. Appl. Comput. Math. 2022, 8, 18. [Google Scholar] [CrossRef]
- Touchard, J. Propriétés arithmétiques de certains nombres récurrents. Ann. Soc. Sci. Brux. A 1933, 53, 21–31. [Google Scholar]
- Touchard, J. Nombres exponentiels et nombres de Bernoulli. Can. J. Math. 1956, 8, 305–320. [Google Scholar] [CrossRef]
- Roman, S. The Umbral Calculus; Dover Publications: New York, NY, USA, 2019. [Google Scholar]
- Simsek, Y. Generating functions for generalized Stirling type numbers, Array type polynomials, Eulerian type polynomials and their applications. Fixed Point Theory Appl. 2013, 2013, 87. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- DeGroot, M.H.; Schervish, M.J. Probability and Statistics, 3rd ed.; Addison-Wesley: Boston, MA, USA, 2002. [Google Scholar]
- Bromwich, T.J.I. An Introduction to the Theory of Injinite Series, 2nd ed.; Macmillan: London, UK, 1926. [Google Scholar]
- Carlitz, L. Congruences for generalized Bell and Stirling numbers. Duke Math. J. 1955, 22, 193–205. [Google Scholar] [CrossRef]
- Riordan, J. An Introduction to Combinutoriul Anulysis; Wiley: New York, NY, USA, 1958. [Google Scholar]
- Andrews, G.E. The Theory of Partitions; Addison-Wesley: Reading, MA, USA, 1976. [Google Scholar]
- Apostol, T.M. On the Lerch zeta function. Pacific J. Math. 1951, 1, 161–167. [Google Scholar] [CrossRef]
- Cakic, N.P.; El-Desouky, B.S.; Milovanovic, G.V. Explicit Formulas and Combinatorial Identities for Generalized Stirling Numbers. Mediterr. J. Math. 2013, 10, 57–72. [Google Scholar] [CrossRef]
- Simsek, Y. Some new families of special polynomials and numbers associated with finite operators. Symmetry 2019, 12, 237. [Google Scholar] [CrossRef]
- Simsek, Y. Functional equations from generating functions: A novel approach to deriving identities for the Bernstein basis functions. Fixed Point Theory Appl. 2013, 2013, 80. [Google Scholar] [CrossRef]
- Karagenc, A.; Acikgoz, M.; Araci, S. Exploring probabilistic Bernstein polynomials: Identities and applications. Appl. Math. Sci. Eng. 2024, 32, 2398591. [Google Scholar] [CrossRef]
- Karagenc, A.; Acikgoz, M.; Araci, S. A new family of q-Bernstein polynomials: Probabilistic viewpoint. Arab J. Basic Appl. Sci. 2025, 32, 42–50. [Google Scholar] [CrossRef]
- Acikgoz, M.; Araci, S. On the generating function for Bernstein polynomials. AIP Conf. Proc. 2010, 1281, 1141–1143. [Google Scholar]
- Simsek, Y. Beta-type polynomials and their generating functions. Appl. Math. Comput. 2015, 254, 172–182. [Google Scholar] [CrossRef]
- Bayad, A.; Chikhi, J. Reduction and duality of the generalized Hurwitz-Lerch zetas. Fixed Point Theory Appl. 2013, 2013, 82. [Google Scholar] [CrossRef]
- Simsek, Y. New families of special numbers for computing negative order Euler numbers and related numbers and polynomials. Appl. Anal. Discrete Math. 2018, 12, 1–35. [Google Scholar] [CrossRef]
- Ceylan, A.Y.; Simsek, B. The Formulae and Symmetry Property of Bernstein Type Polynomials Related to Special Numbers and Functions. Symmetry 2024, 16, 1159. [Google Scholar] [CrossRef]
- Schwatt, I.J. An Introduction to the Operations with Series; Chelsea Publishing Company: New York, NY, USA, 1924; p. 2014. [Google Scholar]
- Gupta, N.; Kumar, A. Fractional Poisson Processes of Order k and Beyond. J. Theor. Probab. 2023, 36, 2165–2191. [Google Scholar] [CrossRef]
- Simsek, Y. Formulas for Poisson–Charlier, Hermite, Milne-Thomson and other type polynomials by their generating functions and p-adic integral approach. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 2019, 113, 931–948. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yilmaz Ceylan, A.; Simsek, Y. Formulae for Generalization of Touchard Polynomials with Their Generating Functions. Symmetry 2025, 17, 1126. https://doi.org/10.3390/sym17071126
Yilmaz Ceylan A, Simsek Y. Formulae for Generalization of Touchard Polynomials with Their Generating Functions. Symmetry. 2025; 17(7):1126. https://doi.org/10.3390/sym17071126
Chicago/Turabian StyleYilmaz Ceylan, Ayse, and Yilmaz Simsek. 2025. "Formulae for Generalization of Touchard Polynomials with Their Generating Functions" Symmetry 17, no. 7: 1126. https://doi.org/10.3390/sym17071126
APA StyleYilmaz Ceylan, A., & Simsek, Y. (2025). Formulae for Generalization of Touchard Polynomials with Their Generating Functions. Symmetry, 17(7), 1126. https://doi.org/10.3390/sym17071126