Parameter Adaptive Differential Evolution Based on Individual Diversity
Abstract
1. Introduction
2. Related Work
2.1. DE
2.2. Control Parameter Settings in DE
2.2.1. Fixed Control Parameter
2.2.2. Control Parameter with Linear Variation
2.2.3. Adaptive Control Parameter
3. Proposed Method
3.1. Motivation
3.2. Complete Procedure of div Mechanism
Algorithm 1 Pseudo-code of div mechanism |
Input: Current population with generation index G and population size NP |
|
Output: Parameter F and CR |
3.3. The ADE-div Framework
Algorithm 2 Pseudo-code of ADE-div |
Initialization
|
Main loop |
|
4. Results
4.1. The Effectiveness of div Mechanism
4.2. Comparisons with State-of-the-Art DEs
4.3. Working Mechanism of div
4.4. Time Complexity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Storn, R.; Price, K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Li, Y.; Han, T.; Zhou, H.; Tang, S.; Zhao, H. A novel adaptive L-SHADE algorithm and its application in UAV swarm resource configuration problem. Inf. Sci. 2022, 606, 350–367. [Google Scholar] [CrossRef]
- Sui, X.; Chu, S.C.; Pan, J.S.; Luo, H. Parallel compact differential evolution for optimization applied to image segmentation. Appl. Sci. 2020, 10, 2195. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Wang, G.G. Improved differential evolution using two-stage mutation strategy for multimodal multi-objective optimization. Swarm Evol. Comput. 2023, 78, 101232. [Google Scholar] [CrossRef]
- Wu, B.; Wang, L.; Lv, S.X.; Zeng, Y.-R. Forecasting oil consumption with attention-based IndRNN optimized by adaptive differential evolution. Appl. Intell. 2023, 53, 5473–5496. [Google Scholar] [CrossRef]
- Zhang, X.; Jin, L.; Cui, C.; Sun, J. A self-adaptive multi-objective dynamic differential evolution algorithm and its application in chemical engineering. Appl. Soft Comput. 2021, 106, 107317. [Google Scholar] [CrossRef]
- Sallam, K.M.; Abohany, A.A.; Rizk-Allah, R.M. An enhanced multi-operator differential evolution algorithm for tackling knapsack optimization problem. Neural Comput. Appl. 2023, 35, 13359–13386. [Google Scholar] [CrossRef]
- Kar, M.K.; Kumar, S.; Singh, A.K.; Panigrahi, S. Reactive power management by using a modified differential evolution algorithm. Opt. Control Appl. Methods 2023, 44, 967–986. [Google Scholar] [CrossRef]
- Qin, A.K.; Suganthan, P.N. Self-adaptive differential evolution algorithm for numerical optimization. In Proceedings of the 2005 IEEE Congress on Evolutionary Computation, Edinburgh, UK, 2–5 September 2005; IEEE: New York, NY, USA, 2005; Volume 2, pp. 1785–1791. [Google Scholar]
- Mezura-Montes, E.; Velázquez-Reyes, J.; Coello Coello, C.A. A comparative study of differential evolution variants for global optimization. In Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, Seattle, WA, USA, 8–12 July 2006; pp. 485–492. [Google Scholar]
- Zhang, J.; Sanderson, A.C. JADE: Adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 2009, 13, 945–958. [Google Scholar] [CrossRef]
- Zheng, L.M.; Zhang, S.X.; Tang, K.S.; Zheng, S.Y. Differential evolution powered by collective information. Inf. Sci. 2017, 399, 13–29. [Google Scholar] [CrossRef]
- Deng, L.; Zhang, L.; Sun, H.; Qiao, L. DSM-DE: A differential evolution with dynamic speciation-based mutation for single-objective optimization. Memet. Comput. 2020, 12, 73–86. [Google Scholar] [CrossRef]
- Wang, C.; Xu, M.; Zhang, Q.; Jiang, R.; Feng, J.; Wei, Y.; Liu, Y. Cooperative co-evolutionary differential evolution algorithm applied for parameters identification of lithium-ion batteries. Expert Syst. Appl. 2022, 200, 117192. [Google Scholar] [CrossRef]
- Agrawal, S.; Tiwari, A. Solving multimodal optimization problems using adaptive differential evolution with archive. Inf. Sci. 2022, 612, 1024–1044. [Google Scholar] [CrossRef]
- Liu, J. On setting the control parameter of the differential evolution method. In Proceedings of the 8th International Conference on Soft Computing (MENDEL 2002), Brno, Czech Republic, 5–7 June 2002; pp. 11–18. [Google Scholar]
- Tanabe, R.; Fukunaga, A.S. Improving the search performance of SHADE using linear population size reduction. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China, 6–11 July 2014; IEEE: New York, NY, USA, 2014; pp. 1658–1665. [Google Scholar]
- Tanabe, R.; Fukunaga, A. Success-history based parameter adaptation for differential evolution. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation, Cancún, Mexico, 20–23 June 2013; IEEE: New York, NY, USA, 2013; pp. 71–78. [Google Scholar]
- Brest, J.; Maučec, M.S.; Bošković, B. iL-SHADE: Improved L-SHADE algorithm for single objective real-parameter optimization. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; IEEE: New York, NY, USA, 2016; pp. 1188–1195. [Google Scholar]
- Brest, J.; Maučec, M.S.; Bošković, B. Single objective real-parameter optimization: Algorithm jSO. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), Donostia-San Sebastián, Spain, 5–8 June 2017; IEEE: New York, NY, USA, 2017; pp. 1311–1318. [Google Scholar]
- Li, S.; Gu, Q.; Gong, W.; Ning, B. An enhanced adaptive differential evolution algorithm for parameter extraction of photovoltaic models. Energy Convers. Manag. 2020, 205, 112443. [Google Scholar] [CrossRef]
- Wang, S.L.; Morsidi, F.; Ng, T.F.; Budiman, H.; Neoh, S.C. Insights into the effects of control parameters and mutation strategy on self-adaptive ensemble-based differential evolution. Inf. Sci. 2020, 514, 203–233. [Google Scholar] [CrossRef]
- Cpałka, K.; Słowik, A.; Łapa, K. A population-based algorithm with the selection of evaluation precision and size of the population. Appl. Soft Comput. 2022, 115, 108154. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, G.; Cheng, L.; Wang, Q.; Li, Q. Methods to balance the exploration and exploitation in differential evolution from different scales: A survey. Neurocomputing 2023, 561, 126899. [Google Scholar] [CrossRef]
- Gämperle, R.; Müller, S.D.; Koumoutsakos, P. A parameter study for differential evolution. Adv. Intell. Syst. Fuzzy Syst. Evol. Comput. 2002, 10, 293–298. [Google Scholar]
- Ronkkonen, J.; Kukkonen, S.; Price, K.V. Real-parameter optimization with differential evolution. In Proceedings of the 2005 IEEE Congress on Evolutionary Computation, Edinburgh, UK, 2–5 September 2005; IEEE: New York, NY, USA, 2005; Volume 1, pp. 506–513. [Google Scholar]
- Wang, Y.; Cai, Z.; Zhang, Q. Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans. Evol. Comput. 2011, 15, 55–66. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, Z.; Zhang, Q. Enhancing the search ability of differential evolution through orthogonal crossover. Inf. Sci. 2012, 185, 153–177. [Google Scholar] [CrossRef]
- Elsayed, S.M.; Sarker, R.A.; Ray, T. Differential evolution with automatic parameter configuration for solving the CEC2013 competition on real-parameter optimization. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation, Cancún, Mexico, 20–23 June 2013; IEEE: New York, NY, USA, 2013; pp. 1932–1937. [Google Scholar]
- Das, S.; Konar, A.; Chakraborty, U.K. Two improved differential evolution schemes for faster global search. In Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, Washington, DC, USA, 25–29 June 2005; pp. 991–998. [Google Scholar]
- Brest, J.; Sepesy Maučec, M. Population size reduction for the differential evolution algorithm. Appl. Intell. 2008, 29, 228–247. [Google Scholar] [CrossRef]
- Awad, N.H.; Ali, M.Z.; Suganthan, P.N. Ensemble of parameters in a sinusoidal differential evolution with niching-based population reduction. Swarm Evol. Comput. 2018, 39, 141–156. [Google Scholar] [CrossRef]
- Ali, M.M.; Törn, A. Population set-based global optimization algorithms: Some modifications and numerical studies. Comput. Oper. Res. 2004, 31, 1703–1725. [Google Scholar] [CrossRef]
- Ghosh, A.; Das, S.; Chowdhury, A.; Giri, R. An improved differential evolution algorithm with fitness-based adaptation of the control parameters. Inf. Sci. 2011, 181, 3749–3765. [Google Scholar] [CrossRef]
- Takahama, T.; Sakai, S. Efficient constrained optimization by the constrained rank-based differential evolution. In Proceedings of the 2012 IEEE Congress on Evolutionary Computation, Brisbane, Australia, 10–13 June 2012; pp. 1–8. [Google Scholar]
- Tang, L.; Dong, Y.; Liu, J. Differential evolution with an individual-dependent mechanism. IEEE Trans. Evol. Comput. 2014, 19, 560–574. [Google Scholar] [CrossRef]
- Brest, J.; Greiner, S.; Boskovic, B.; Mernik, M.; Zumer, V. Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 2006, 10, 646–657. [Google Scholar] [CrossRef]
- Tirronen, V.; Neri, F. Differential evolution with fitness diversity self-adaptation. In Nature-Inspired Algorithms for Optimisation; Springer: Berlin/Heidelberg, Germany, 2009; pp. 199–234. [Google Scholar]
- Jia, L.; Gong, W.; Wu, H. An improved self-adaptive control parameter of differential evolution for global optimization. In Proceedings of the Computational Intelligence and Intelligent Systems: 4th International Symposium, ISICA 2009, Huangshi, China, 23–25 October 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 215–224. [Google Scholar]
- Xu, Q.; Meng, Z. Differential Evolution with multi-stage parameter adaptation and diversity enhancement mechanism for numerical optimization. Swarm Evol. Comput. 2025, 92, 101829. [Google Scholar] [CrossRef]
- Ghosh, A.; Das, S.; Das, A.K.; Senkerik, R.; Viktorin, A.; Zelinka, I.; Masegosa, A.D. Using spatial neighborhoods for parameter adaptation: An improved success history based differential evolution. Swarm Evol. Comput. 2022, 71, 101057. [Google Scholar] [CrossRef]
- Poláková, R.; Tvrdík, J.; Bujok, P. Differential evolution with adaptive mechanism of population size according to current population diversity. Swarm Evol. Comput. 2019, 50, 100519. [Google Scholar] [CrossRef]
- Tong, L.; Dong, M.; Jing, C. An improved multi-population ensemble differential evolution. Neurocomputing 2018, 290, 130–147. [Google Scholar] [CrossRef]
- Wu, G.; Mallipeddi, R.; Suganthan, P.N.; Wang, R.; Chen, H. Differential evolution with multi-population based ensemble of mutation strategies. Inf. Sci. 2016, 329, 329–345. [Google Scholar] [CrossRef]
- Gui, L.; Xia, X.; Yu, F.; Wu, H.; Wu, R.; Wei, B.; Zhang, Y.; Li, X.; He, G. A multi-role based differential evolution. Swarm Evol. Comput. 2019, 50, 100508. [Google Scholar] [CrossRef]
- Yi, W.; Chen, Y.; Pei, Z.; Lu, J. Adaptive differential evolution with ensembling operators for continuous optimization problems. Swarm Evol. Comput. 2022, 69, 100994. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, J.; Bäck, T.; Zhang, Q.; Xu, Z. Controlling sequential hybrid evolutionary algorithm by q-learning [research frontier] [research frontier]. IEEE Comput. Intell. Mag. 2023, 18, 84–103. [Google Scholar] [CrossRef]
- Li, S.; Li, W.; Tang, J.; Wang, F. A new evolving operator selector by using fitness landscape in differential evolution algorithm. Inf. Sci. 2023, 624, 709–731. [Google Scholar] [CrossRef]
- Zeng, Z.; Zhang, M.; Zhang, H.; Hong, Z. Improved differential evolution algorithm based on the sawtooth-linear population size adaptive method. Inf. Sci. 2022, 608, 1045–1071. [Google Scholar] [CrossRef]
- Wang, M.; Ma, Y.; Wang, P. Parameter and strategy adaptive differential evolution algorithm based on accompanying evolution. Inf. Sci. 2022, 607, 1136–1157. [Google Scholar] [CrossRef]
- Meng, Z.; Yang, C. Two-stage differential evolution with novel parameter control. Inf. Sci. 2022, 596, 321–342. [Google Scholar] [CrossRef]
- Abbas, Q.; Malik, K.M.; Saudagar, A.K.J.; Khan, M.B.; Hasanat, M.H.A.; AlTameem, A.; AlKhathami, M. Convergence Track Based Adaptive Differential Evolution Algorithm (CTbADE). Comput. Mater. Continua 2022, 72, 1229–1250. [Google Scholar] [CrossRef]
- Huynh, T.N.; Do, D.T.T.; Lee, J. Q-Learning-based parameter control in differential evolution for structural optimization. Appl. Soft Comput. 2021, 107, 107464. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, K.; Zhang, L.; Yao, C.; Yao, J.; Wang, H.; Jian, W.; Yan, Y. Data-driven niching differential evolution with adaptive parameters control for history matching and uncertainty quantification. Spe J. 2021, 26, 993–1010. [Google Scholar] [CrossRef]
- Awad, N.H.; Ali, M.Z.; Liang, J.J.; Qu, B.Y.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Bound Constrained Real-Parameter Numerical Optimization; Nanyang Technological University: Singapore, 2016. [Google Scholar]
- Wilcoxon, F. Individual comparisons by ranking methods. In Breakthroughs in Statistics: Methodology and Distribution; Springer: New York, NY, USA, 1992; pp. 196–202. [Google Scholar]
- Zhang, S.X.; Wen, Y.N.; Liu, Y.H.; Zheng, L.M.; Zheng, S.Y. Differential evolution with domain transform. IEEE Trans. Evol. Comput. 2022, 27, 1440–1455. [Google Scholar] [CrossRef]
- Stanovov, V.; Akhmedova, S.; Semenkin, E. LSHADE algorithm with rank-based selective pressure strategy for solving CEC 2017 benchmark problems. In Proceedings of the 2018 IEEE congress on evolutionary computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018; IEEE: New York, NY, USA, 2018; pp. 1–8. [Google Scholar]
- Viktorin, A.; Senkerik, R.; Pluhacek, M.; Kadavy, T.; Zamuda, A. Distance based parameter adaptation for success-history based differential evolution. Swarm Evol. Comput. 2019, 50, 100462. [Google Scholar] [CrossRef]
- Zhang, S.X.; Chan, W.S.; Peng, Z.K.; Zheng, S.Y.; Tang, K.S. Selective-candidate framework with similarity selection rule for evolutionary optimization. Swarm Evol. Comput. 2020, 56, 100696. [Google Scholar] [CrossRef]
- Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [Google Scholar] [CrossRef]
Algorithm | Parameter Settings |
---|---|
JADE | |
L-SHADE | |
jSO | |
DTDE |
D Function | 50-D | 100-D | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
JADE | JADE-Div | JADE | JADE-Div | |||||||
Mean | Std | Mean | Std | Sig | Mean | Std | Mean | Std | Sig | |
F1 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | = | 0 | 0 | 0 | 0 | = |
F3 | 9.95E+03 | 2.82E+04 | 3.38E-08 | 4.60E-08 | - | 4.25E+05 | 1.11E+04 | 2.05E-01 | 6.39E-02 | + |
F4 | 3.48E+01 | 3.14E+01 | 3.92E+01 | 4.62E+01 | = | 1.65E+02 | 4.45E+01 | 8.95E+01 | 1.93E+01 | + |
F5 | 5.58E+01 | 6.43E+00 | 3.39E+01 | 5.05E+00 | + | 2.84E+02 | 8.79E+00 | 1.60E+02 | 1.59E+00 | + |
F6 | 0.00E+00 | 0.00E+00 | 1.12E-02 | 5.33E-03 | - | 1.62E-07 | 5.30E-08 | 8.59E-04 | 6.60E-05 | - |
F7 | 1.03E+02 | 5.59E+00 | 8.66E+01 | 5.08E+00 | + | 4.37E+02 | 1.10E+01 | 3.14E+02 | 1.53E+00 | + |
F8 | 5.38E+01 | 8.01E+00 | 3.38E+01 | 6.30E+00 | + | 2.77E+02 | 1.23E+01 | 1.78E+02 | 5.41E+00 | + |
F9 | 4.86E-01 | 6.94E-01 | 7.65E+00 | 3.48E+00 | - | 4.59E-01 | 2.23E-01 | 5.89E+00 | 0.00E+00 | - |
F10 | 3.86E+03 | 3.33E+02 | 5.51E+03 | 1.04E+03 | - | 1.77E+04 | 1.35E+02 | 1.74E+04 | 9.56E+01 | + |
F11 | 1.31E+02 | 3.28E+01 | 1.48E+02 | 5.79E+01 | = | 9.73E+03 | 1.34E+04 | 2.77E+02 | 1.55E+01 | + |
F12 | 5.11E+03 | 2.72E+03 | 1.35E+04 | 6.09E+03 | - | 2.59E+04 | 1.06E+04 | 2.17E+04 | 7.35E-12 | = |
F13 | 2.83E+02 | 1.64E+02 | 3.66E+02 | 4.60E+02 | + | 8.38E+02 | 2.73E+02 | 6.33E+02 | 1.55E+02 | = |
F14 | 4.30E+04 | 6.88E+04 | 6.15E+01 | 1.56E+01 | + | 4.91E+02 | 5.83E+01 | 9.09E+01 | 6.61E+00 | + |
F15 | 5.62E+02 | 9.19E+02 | 1.11E+02 | 6.08E+01 | + | 2.79E+02 | 6.96E+01 | 2.79E+02 | 7.07E+00 | = |
F16 | 8.24E+02 | 1.58E+02 | 6.60E+02 | 1.62E+02 | + | 3.69E+03 | 1.00E+00 | 2.84E+03 | 3.45E+02 | + |
F17 | 5.90E+02 | 9.78E+01 | 5.99E+02 | 2.42E+02 | = | 2.93E+03 | 8.76E+01 | 2.30E+03 | 4.59E-13 | + |
F18 | 1.69E+02 | 8.85E+01 | 1.56E+02 | 5.82E+01 | = | 3.63E+02 | 2.49E+01 | 2.46E+02 | 7.83E+01 | + |
F19 | 1.47E+02 | 4.95E+01 | 7.44E+01 | 2.59E+01 | + | 2.41E+02 | 4.30E+01 | 1.01E+02 | 2.22E+01 | + |
F20 | 4.68E+02 | 1.25E+02 | 5.85E+02 | 1.93E+02 | - | 3.21E+03 | 2.49E+02 | 2.84E+03 | 1.56E+02 | + |
F21 | 2.47E+02 | 9.45E+00 | 2.36E+02 | 4.03E+00 | + | 4.97E+02 | 2.44E+01 | 3.84E+02 | 5.74E-14 | + |
F22 | 4.15E+03 | 1.04E+03 | 3.34E+03 | 2.32E+03 | = | 1.90E+04 | 1.36E+02 | 1.95E+04 | 2.77E+02 | - |
F23 | 4.74E+02 | 1.31E+01 | 4.56E+02 | 6.96E+00 | + | 7.89E+02 | 6.56E+00 | 6.83E+02 | 9.64E+00 | + |
F24 | 5.42E+02 | 8.32E+00 | 5.32E+02 | 7.30E+00 | + | 1.13E+03 | 2.20E+01 | 9.22E+02 | 7.19E+00 | + |
F25 | 5.20E+02 | 3.84E+01 | 5.14E+02 | 2.92E+01 | = | 7.71E+02 | 5.48E+00 | 7.73E+02 | 8.27E+00 | + |
F26 | 1.57E+03 | 9.06E+01 | 1.41E+03 | 7.05E+01 | + | 5.48E+03 | 1.11E+02 | 4.17E+03 | 0.00E+00 | + |
F27 | 5.59E+02 | 1.99E+01 | 5.42E+02 | 2.05E+01 | + | 6.40E+02 | 4.02E+00 | 5.82E+02 | 1.30E+01 | + |
F28 | 4.99E+02 | 1.57E+01 | 4.89E+02 | 2.35E+01 | + | 5.09E+02 | 1.40E+01 | 5.17E+02 | 9.65E+00 | = |
F29 | 6.18E+02 | 1.70E+02 | 4.21E+02 | 4.63E+01 | + | 2.42E+03 | 6.62E+01 | 1.88E+03 | 7.72E+01 | + |
F30 | 6.40E+05 | 6.93E+04 | 6.77E+05 | 7.03E+04 | - | 2.45E+03 | 6.42E+02 | 2.82E+03 | 1.91E+02 | - |
/− | 15/7/7 | 20/5/4 |
Algorithm | Parameter Settings |
---|---|
EJADE | |
jSO | |
L-SHADE-RSP | |
DISH | |
SCSS-L-SHADE | |
DTDE-div |
Function | EJADE | jSO | L-SHADE-RSP | DISH | SCSS-L-SHADE | DTDE-Div | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean (Std) | Sig | Mean (Std) | Sig | Mean (Std) | Sig | Mean (Std) | Sig | Mean (Std) | Sig | Mean (Std) | |
F1 | 0.00E+00(0.00E+00) | - | 0.00E+00(0.00E+00) | - | 0.00E+00(0.00E+00) | - | 0.00E+00(0.00E+00) | - | 0.00E+00(0.00E+00) | - | 1.59E-04(5.06E-04) |
F3 | 6.09E+01(1.32E+02) | = | 0.00E+00(0.00E+00) | - | 0.00E+00(0.00E+00) | - | 0.00E+00(0.00E+00) | - | 0.00E+00(0.00E+00) | - | 1.01E-04(2.80E-04) |
F4 | 4.99E+01(4.70E+01) | - | 5.93E+01(4.70E+01) | = | 5.55E+01(4.80E+01) | = | 4.80E+01(4.54E+01) | = | 6.12E+01(5.01E+01) | = | 5.84E+01(4.61E+01) |
F5 | 4.45E+01(1.02E+01) | + | 1.39E+01(3.07E+00) | + | 1.34E+01(3.88E+00) | + | 1.29E+01(3.96E+00) | + | 1.14E+01(2.80E+00) | + | 2.09E+00(1.44E+00) |
F6 | 8.38E-07(3.95E-06) | - | 2.35E-07(4.72E-07) | - | 9.05E-08(1.99E-07) | - | 2.57E-07(5.82E-07) | - | 3.94E-08(9.75E-08) | - | 1.69E-06(2.35E-06) |
F7 | 8.94E+01(8.91E+00) | + | 6.64E+01(3.29E+00) | + | 6.72E+01(3.07E+00) | + | 6.81E+01(3.09E+00) | + | 6.34E+01(1.97E+00) | + | 5.70E+01(9.27E-01) |
F8 | 4.09E+01(6.76E+00) | + | 1.47E+01(4.01E+00) | + | 1.34E+01(3.28E+00) | + | 1.37E+01(3.94E+00) | + | 1.16E+01(2.44E+00) | + | 2.19E+00(1.73E+00) |
F9 | 4.71E-01(6.63E-01) | + | 0.00E+00(0.00E+00) | = | 0.00E+00(0.00E+00) | = | 0.00E+00(0.00E+00) | = | 0.00E+00(0.00E+00) | = | 1.11E-13(1.59E-14) |
F10 | 3.38E+03(6.45E+02) | + | 3.60E+03(3.96E+02) | + | 3.48E+03(4.36E+02) | + | 3.75E+03(3.43E+02) | + | 3.17E+03(2.85E+02) | + | 1.50E+02(9.90E+01) |
F11 | 4.50E+01(1.10E+01) | + | 2.62E+01(4.25E+00) | + | 2.37E+01(3.87E+00) | = | 2.34E+01(3.67E+00) | = | 3.26E+01(5.02E+00) | + | 2.42E+01(2.90E+00) |
F12 | 6.59E+03(5.51E+03) | + | 1.93E+03(4.17E+02) | + | 1.68E+03(3.76E+02) | = | 1.44E+03(3.51E+02) | = | 2.02E+03(5.27E+02) | + | 1.55E+03(4.25E+02) |
F13 | 8.22E+01(6.78E+01) | + | 3.68E+01(2.29E+01) | - | 3.23E+01(1.90E+01) | - | 4.21E+01(2.91E+01) | = | 4.16E+01(2.55E+01) | = | 4.56E+01(2.40E+01) |
F14 | 5.09E+01(2.64E+01) | + | 2.42E+01(2.00E+00) | - | 2.31E+01(1.61E+00) | - | 2.42E+01(1.84E+00) | - | 2.53E+01(1.81E+00) | - | 3.01E+01(3.25E+00) |
F15 | 6.41E+01(5.04E+01) | + | 2.27E+01(2.17E+00) | - | 2.13E+01(1.81E+00) | - | 2.10E+01(1.97E+00) | - | 2.79E+01(4.53E+00) | + | 2.51E+01(2.76E+00) |
F16 | 6.81E+02(2.56E+02) | + | 3.94E+02(1.61E+02) | + | 3.60E+02(1.52E+02) | + | 3.87E+02(1.42E+02) | + | 3.41E+02(1.24E+02) | + | 1.46E+02(6.81E+01) |
F17 | 4.78E+02(2.11E+02) | + | 2.57E+02(9.72E+01) | + | 2.35E+02(9.46E+01) | + | 2.91E+02(1.23E+02) | + | 1.94E+02(7.26E+01) | + | 5.28E+01(5.47E+01) |
F18 | 1.05E+02(9.34E+01) | + | 2.42E+01(1.91E+00) | - | 2.29E+01(1.47E+00) | - | 2.25E+01(1.33E+00) | - | 2.65E+01(2.69E+00) | - | 4.69E+01(1.04E+01) |
F19 | 3.21E+01(3.47E+01) | + | 1.28E+01(2.51E+00) | + | 1.04E+01(2.38E+00) | = | 1.12E+01(2.41E+00) | + | 1.50E+01(2.43E+00) | + | 9.76E+00(2.01E+00) |
F20 | 3.62E+02(1.85E+02) | + | 1.39E+02(5.35E+01) | + | 1.34E+02(6.99E+01) | + | 1.69E+02(8.55E+01) | + | 1.75E+02(7.21E+01) | + | 2.29E+01(1.93E+00) |
F21 | 2.41E+02(8.47E+00) | + | 2.14E+02(4.05E+00) | + | 2.14E+02(3.58E+00) | + | 2.15E+02(4.57E+00) | + | 2.13E+02(2.83E+00) | + | 2.04E+02(2.08E+00) |
F22 | 3.07E+03(1.56E+03) | + | 1.88E+03(2.01E+03) | = | 2.28E+03(1.81E+03) | + | 1.73E+03(1.98E+03) | = | 2.85E+03(1.52E+03) | + | 3.09E+02(1.18E+02) |
F23 | 4.65E+02(1.36E+01) | + | 4.31E+02(5.29E+00) | + | 4.31E+02(6.60E+00) | + | 4.33E+02(6.61E+00) | + | 4.28E+02(3.68E+00) | + | 4.19E+02(6.91E+00) |
F24 | 5.28E+02(8.86E+00) | + | 5.08E+02(4.68E+00) | + | 5.08E+02(3.63E+00) | + | 5.08E+02(3.97E+00) | + | 5.05E+02(2.72E+00) | + | 4.98E+02(2.32E+00) |
F25 | 5.23E+02(3.90E+01) | + | 4.81E+02(3.15E+00) | = | 4.81E+02(2.80E+00) | - | 4.80E+02(1.62E+00) | - | 4.83E+02(1.18E+01) | + | 4.80E+02(1.62E+00) |
F26 | 1.45E+03(1.33E+02) | + | 1.13E+03(4.76E+01) | + | 1.13E+03(4.61E+01) | + | 1.11E+03(4.50E+01) | + | 1.12E+03(4.23E+01) | + | 9.08E+02(8.73E+01) |
F27 | 5.27E+02(1.49E+01) | + | 5.12E+02(8.93E+00) | = | 5.11E+02(1.01E+01) | - | 5.07E+02(9.96E+00) | - | 5.25E+02(1.56E+01) | + | 5.15E+02(7.52E+00) |
F28 | 4.85E+02(2.37E+01) | + | 4.59E+02(1.78E-13) | - | 4.59E+02(2.13E-13) | - | 4.59E+02(1.78E-13) | - | 4.63E+02(1.33E+01) | - | 4.60E+02(5.68E+00) |
F29 | 3.34E+02(5.22E+01) | + | 3.71E+02(1.43E+01) | + | 3.63E+02(1.58E+01) | + | 3.77E+02(1.57E+01) | + | 3.63E+02(1.17E+01) | + | 3.05E+02(7.46E+00) |
F30 | 6.14E+05(4.39E+04) | = | 6.23E+05(5.20E+04) | = | 6.11E+05(2.99E+04) | = | 6.01E+05(2.10E+04) | = | 6.48E+05(5.92E+04) | + | 6.15E+05(3.79E+04) |
/− | 24/2/3 | 15/6/8 | 13/6/10 | 13/7/9 | 20/3/6 |
Algorithm | JADE-Div-Opposite | JADE-Div-Random | JADE-Div |
---|---|---|---|
/− | 24/2/3 | 13/9/7 | / |
Performance ranking | 2.79 | 1.90 | 1.31 |
Algorithm | ||||
---|---|---|---|---|
JADE | 0.0484 | 0.3012 | 0.5797 | 5.7541 |
JADE-div | 0.6118 | 6.4174 |
D Function | 50-D | 100-D | ||||||||
L-SHADE | L-SHADE-Div | L-SHADE | L-SHADE-Div | |||||||
Mean | Std | Mean | Std | Sig | Mean | Std | Mean | Std | Sig | |
F1 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | = | 0.00E+00 | 0.00E+00 | 7.95E-08 | 1.35E-07 | - |
F3 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | = | 9.74E-07 | 1.32E-06 | 6.36E-03 | 7.01E-03 | - |
F4 | 8.58E+01 | 4.41E+01 | 5.73E+01 | 5.03E+01 | = | 1.98E+02 | 8.36E+00 | 1.99E+02 | 1.26E+01 | = |
F5 | 1.07E+01 | 2.15E+00 | 1.34E+01 | 2.66E+00 | - | 3.75E+01 | 5.25E+00 | 3.73E+01 | 5.35E+00 | = |
F6 | 7.88E-05 | 5.61E-04 | 6.05E-07 | 1.02E-06 | = | 6.11E-03 | 3.98E-03 | 1.70E-03 | 1.66E-03 | + |
F7 | 6.40E+01 | 1.70E+00 | 6.72E+01 | 3.65E+00 | - | 1.41E+02 | 4.72E+00 | 1.45E+02 | 6.24E+00 | - |
F8 | 1.38E+01 | 2.48E+00 | 1.37E+01 | 2.95E+00 | = | 3.68E+01 | 4.47E+00 | 3.70E+01 | 4.75E+00 | = |
F9 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | = | 4.33E-01 | 4.98E-01 | 7.09E-02 | 1.48E-01 | + |
F10 | 3.01E+03 | 2.73E+02 | 3.34E+03 | 3.07E+02 | - | 1.03E+04 | 5.22E+02 | 1.13E+04 | 5.08E+02 | - |
F11 | 5.69E+01 | 1.11E+01 | 2.92E+01 | 4.27E+00 | + | 4.43E+02 | 9.67E+01 | 1.09E+02 | 3.55E+01 | + |
F12 | 2.46E+03 | 4.20E+02 | 1.74E+03 | 4.13E+02 | + | 2.17E+04 | 9.58E+03 | 9.26E+03 | 2.84E+03 | + |
F13 | 5.19E+01 | 3.48E+01 | 4.45E+01 | 2.57E+01 | = | 5.84E+02 | 6.22E+02 | 1.29E+02 | 3.12E+01 | + |
F14 | 2.80E+01 | 2.42E+00 | 2.54E+01 | 2.27E+00 | + | 2.64E+02 | 3.79E+01 | 4.65E+01 | 5.79E+00 | + |
F15 | 3.84E+01 | 6.95E+00 | 2.40E+01 | 2.43E+00 | + | 2.42E+02 | 5.30E+01 | 1.41E+02 | 3.66E+01 | + |
F16 | 3.72E+02 | 9.10E+01 | 4.06E+02 | 1.30E+02 | = | 1.70E+03 | 2.43E+02 | 1.76E+03 | 2.96E+02 | = |
F17 | 2.72E+02 | 6.62E+01 | 2.98E+02 | 1.02E+02 | = | 1.09E+03 | 2.12E+02 | 1.36E+03 | 2.02E+02 | - |
F18 | 3.26E+01 | 9.82E+00 | 2.39E+01 | 1.69E+00 | + | 2.16E+02 | 4.54E+01 | 1.65E+02 | 3.62E+01 | + |
F19 | 2.48E+01 | 4.79E+00 | 1.39E+01 | 2.34E+00 | + | 1.73E+02 | 2.51E+01 | 7.62E+01 | 1.94E+01 | + |
F20 | 1.69E+02 | 5.54E+01 | 2.44E+02 | 9.26E+01 | - | 1.52E+03 | 2.33E+02 | 1.89E+03 | 2.67E+02 | - |
F21 | 2.12E+02 | 1.96E+00 | 2.16E+02 | 2.96E+00 | - | 2.59E+02 | 5.81E+00 | 2.58E+02 | 5.85E+00 | = |
F22 | 1.21E+03 | 1.62E+03 | 2.84E+03 | 1.68E+03 | - | 1.13E+04 | 5.12E+02 | 1.20E+04 | 6.96E+02 | - |
F23 | 4.31E+02 | 3.17E+00 | 4.31E+02 | 4.55E+00 | = | 5.71E+02 | 8.64E+00 | 5.63E+02 | 9.43E+00 | + |
F24 | 5.06E+02 | 2.27E+00 | 5.06E+02 | 2.98E+00 | = | 9.11E+02 | 8.64E+00 | 9.01E+02 | 8.59E+00 | + |
F25 | 4.84E+02 | 1.59E+01 | 4.82E+02 | 4.03E+00 | + | 7.44E+02 | 3.44E+01 | 7.07E+02 | 4.96E+01 | + |
F26 | 1.18E+03 | 4.88E+01 | 1.13E+03 | 5.78E+01 | + | 3.30E+03 | 8.59E+01 | 3.18E+03 | 9.70E+01 | + |
F27 | 5.27E+02 | 1.04E+01 | 5.16E+02 | 1.46E+01 | + | 6.29E+02 | 1.73E+01 | 6.09E+02 | 2.01E+01 | + |
F28 | 4.68E+02 | 1.96E+01 | 4.59E+02 | 1.15E-13 | + | 5.23E+02 | 2.21E+01 | 5.37E+02 | 2.73E+01 | - |
F29 | 3.45E+02 | 9.34E+00 | 3.69E+02 | 1.91E+01 | - | 1.25E+03 | 1.80E+02 | 1.37E+03 | 2.05E+02 | - |
F30 | 7.28E+05 | 1.01E+05 | 6.32E+05 | 7.36E+04 | + | 2.42E+03 | 1.55E+02 | 2.35E+03 | 1.52E+02 | + |
/− | 11/11/7 | 15/5/9 |
D Function | 50-D | 100-D | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
jSO | jSO-Div | jSO | jSO-Div | |||||||
Mean | Std | Mean | Std | Sig | Mean | Std | Mean | Std | Sig | |
F1 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | = | 0.00E+00 | 0.00E+00 | 2.42E-04 | 3.37E-04 | - |
F3 | 0.00E+00 | 0.00E+00 | 6.28E-10 | 3.26E-09 | = | 7.08E-07 | 6.21E-07 | 2.68E-02 | 2.31E-02 | - |
F4 | 6.09E+01 | 5.20E+01 | 5.99E+01 | 5.19E+01 | = | 1.98E+02 | 1.02E+01 | 1.98E+02 | 9.22E+00 | = |
F5 | 1.55E+01 | 3.09E+00 | 1.24E+01 | 3.45E+00 | + | 3.63E+01 | 6.71E+00 | 2.33E+01 | 5.32E+00 | + |
F6 | 5.48E-07 | 9.12E-07 | 8.18E-06 | 7.63E-06 | - | 2.23E-04 | 5.99E-04 | 1.45E-04 | 1.29E-04 | - |
F7 | 6.55E+01 | 3.51E+00 | 6.43E+01 | 3.06E+00 | = | 1.41E+02 | 6.93E+00 | 1.28E+02 | 4.87E+00 | + |
F8 | 1.58E+01 | 3.27E+00 | 1.31E+01 | 2.75E+00 | + | 3.74E+01 | 7.19E+00 | 2.17E+01 | 5.10E+00 | + |
F9 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | = | 2.12E-02 | 8.21E-02 | 1.23E-02 | 3.11E-02 | = |
F10 | 3.04E+03 | 4.25E+02 | 3.34E+03 | 4.08E+02 | - | 9.61E+03 | 6.84E+02 | 1.02E+04 | 9.84E+02 | - |
F11 | 2.76E+01 | 3.39E+00 | 2.41E+01 | 3.82E+00 | + | 1.13E+02 | 3.34E+01 | 5.83E+01 | 3.23E+01 | + |
F12 | 1.75E+03 | 4.72E+02 | 1.08E+03 | 3.52E+02 | + | 1.67E+04 | 7.92E+03 | 9.80E+03 | 3.39E+03 | + |
F13 | 2.82E+01 | 1.80E+01 | 2.29E+01 | 1.78E+01 | = | 1.55E+02 | 3.79E+01 | 1.28E+02 | 3.24E+01 | + |
F14 | 2.40E+01 | 1.85E+00 | 2.32E+01 | 1.79E+00 | = | 6.33E+01 | 9.82E+00 | 3.25E+01 | 3.93E+00 | + |
F15 | 2.37E+01 | 2.43E+00 | 2.00E+01 | 1.55E+00 | + | 1.67E+02 | 3.55E+01 | 1.13E+02 | 3.97E+01 | + |
F16 | 4.48E+02 | 1.76E+02 | 4.47E+02 | 1.68E+02 | = | 1.72E+03 | 3.63E+02 | 1.78E+03 | 2.75E+02 | = |
F17 | 2.94E+02 | 9.02E+01 | 2.74E+02 | 1.34E+02 | = | 1.24E+03 | 2.49E+02 | 1.25E+03 | 2.89E+02 | = |
F18 | 2.45E+01 | 2.22E+00 | 2.21E+01 | 9.61E-01 | + | 1.87E+02 | 3.41E+01 | 8.33E+01 | 1.99E+01 | + |
F19 | 1.39E+01 | 3.13E+00 | 1.03E+01 | 2.20E+00 | + | 1.09E+02 | 1.71E+01 | 4.88E+01 | 6.30E+00 | + |
F20 | 1.24E+02 | 6.66E+01 | 1.48E+02 | 9.59E+01 | = | 1.27E+03 | 2.39E+02 | 1.47E+03 | 3.05E+02 | - |
F21 | 2.17E+02 | 2.42E+00 | 2.16E+02 | 3.24E+00 | + | 2.60E+02 | 5.62E+00 | 2.46E+02 | 5.82E+00 | + |
F22 | 1.55E+03 | 1.76E+03 | 1.76E+03 | 1.88E+03 | - | 1.04E+04 | 7.36E+02 | 1.08E+04 | 9.80E+02 | - |
F23 | 4.34E+02 | 5.73E+00 | 4.32E+02 | 7.08E+00 | = | 5.61E+02 | 1.17E+01 | 5.70E+02 | 9.99E+00 | - |
F24 | 5.13E+02 | 3.76E+00 | 5.12E+02 | 3.39E+00 | = | 9.17E+02 | 8.52E+00 | 9.10E+02 | 9.04E+00 | + |
F25 | 4.81E+02 | 2.36E+00 | 4.81E+02 | 3.15E+00 | + | 7.21E+02 | 4.26E+01 | 6.87E+02 | 4.68E+01 | + |
F26 | 1.18E+03 | 4.85E+01 | 1.16E+03 | 5.77E+01 | + | 3.37E+03 | 9.77E+01 | 3.25E+03 | 8.91E+01 | + |
F27 | 5.19E+02 | 1.01E+01 | 5.08E+02 | 8.74E+00 | + | 5.98E+02 | 1.65E+01 | 5.73E+02 | 1.47E+01 | + |
F28 | 4.61E+02 | 9.58E+00 | 4.59E+02 | 2.22E-13 | - | 5.25E+02 | 2.31E+01 | 5.24E+02 | 2.95E+01 | = |
F29 | 3.58E+02 | 1.52E+01 | 3.60E+02 | 1.78E+01 | = | 1.37E+03 | 1.96E+02 | 1.33E+03 | 2.52E+02 | = |
F30 | 6.16E+05 | 3.96E+04 | 6.03E+05 | 2.70E+04 | = | 2.35E+03 | 1.37E+02 | 2.24E+03 | 9.74E+01 | + |
/− | 11/14/4 | 16/6/7 |
D Function | 50-D | 100-D | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
DTDE | DTDE-Div | DTDE | DTDE-Div | |||||||
Mean | Std | Mean | Std | Sig | Mean | Std | Mean | Std | Sig | |
F1 | 0.00E+00 | 0.00E+00 | 4.21E-05 | 1.15E-04 | - | 0.00E+00 | 0.00E+00 | 1.36E+00 | 1.82E+00 | - |
F3 | 0.00E+00 | 0.00E+00 | 9.78E-05 | 1.83E-04 | - | 1.15E-04 | 1.39E-04 | 1.03E+02 | 1.15E+02 | - |
F4 | 7.49E+01 | 5.29E+01 | 6.05E+01 | 4.89E+01 | = | 1.97E+02 | 7.24E+00 | 2.01E+02 | 8.16E+00 | - |
F5 | 1.70E+00 | 1.37E+00 | 2.05E+00 | 1.33E+00 | = | 4.10E+00 | 2.32E+00 | 3.59E+00 | 2.08E+00 | = |
F6 | 4.19E-08 | 1.15E-07 | 1.91E-06 | 2.21E-06 | - | 2.26E-03 | 1.98E-03 | 1.55E-04 | 3.20E-04 | + |
F7 | 5.66E+01 | 9.29E-01 | 5.72E+01 | 1.09E+00 | - | 1.12E+02 | 1.65E+00 | 1.13E+02 | 1.72E+00 | - |
F8 | 2.24E+00 | 1.54E+00 | 2.34E+00 | 1.56E+00 | = | 4.00E+00 | 1.66E+00 | 3.71E+00 | 2.16E+00 | = |
F9 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | = | 9.75E-02 | 1.78E-01 | 1.42E-02 | 6.64E-02 | + |
F10 | 1.56E+02 | 1.05E+02 | 1.35E+02 | 7.48E+01 | = | 5.16E+02 | 3.05E+02 | 3.96E+02 | 2.81E+02 | + |
F11 | 3.31E+01 | 4.46E+00 | 2.32E+01 | 2.81E+00 | + | 1.58E+02 | 3.60E+01 | 1.35E+02 | 2.89E+01 | + |
F12 | 2.12E+03 | 5.05E+02 | 1.71E+03 | 4.20E+02 | + | 1.87E+04 | 8.72E+03 | 4.01E+04 | 1.50E+04 | - |
F13 | 5.53E+01 | 3.12E+01 | 4.74E+01 | 2.72E+01 | = | 1.70E+02 | 4.50E+01 | 1.60E+02 | 5.13E+01 | = |
F14 | 2.50E+01 | 4.87E+00 | 2.98E+01 | 3.39E+00 | - | 8.06E+01 | 1.90E+01 | 4.86E+01 | 1.01E+01 | + |
F15 | 2.62E+01 | 3.74E+00 | 2.51E+01 | 2.75E+00 | = | 2.48E+02 | 5.00E+01 | 1.45E+02 | 4.43E+01 | + |
F16 | 1.42E+02 | 5.29E+01 | 1.41E+02 | 5.03E+01 | = | 2.39E+02 | 1.52E+02 | 1.98E+02 | 1.32E+02 | = |
F17 | 5.53E+01 | 6.24E+01 | 4.81E+01 | 5.27E+01 | = | 7.78E+01 | 8.36E+01 | 7.24E+01 | 1.04E+02 | = |
F18 | 3.37E+01 | 6.24E+00 | 4.89E+01 | 1.14E+01 | - | 2.15E+02 | 4.85E+01 | 1.85E+02 | 3.82E+01 | + |
F19 | 1.01E+01 | 2.15E+00 | 1.02E+01 | 2.63E+00 | = | 1.68E+02 | 2.17E+01 | 4.82E+01 | 1.03E+01 | + |
F20 | 2.31E+01 | 2.21E+00 | 2.32E+01 | 2.26E+00 | = | 1.64E+02 | 3.53E+01 | 1.74E+02 | 6.89E+01 | = |
F21 | 2.03E+02 | 2.01E+00 | 2.03E+02 | 2.21E+00 | = | 2.27E+02 | 3.71E+00 | 2.25E+02 | 3.39E+00 | + |
F22 | 3.17E+02 | 1.45E+02 | 3.25E+02 | 1.50E+02 | = | 9.91E+02 | 3.03E+02 | 1.07E+03 | 2.80E+02 | = |
F23 | 4.23E+02 | 6.76E+00 | 4.19E+02 | 5.56E+00 | + | 5.49E+02 | 8.15E+00 | 5.30E+02 | 6.40E+00 | + |
F24 | 5.00E+02 | 2.58E+00 | 4.98E+02 | 1.92E+00 | + | 8.94E+02 | 6.64E+00 | 8.75E+02 | 3.68E+00 | + |
F25 | 4.82E+02 | 4.26E+00 | 4.82E+02 | 3.77E+00 | + | 7.42E+02 | 3.34E+01 | 7.20E+02 | 3.88E+01 | + |
F26 | 1.05E+03 | 5.89E+01 | 9.00E+02 | 8.58E+01 | + | 3.13E+03 | 7.44E+01 | 2.72E+03 | 6.28E+01 | + |
F27 | 5.29E+02 | 1.78E+01 | 5.14E+02 | 9.50E+00 | + | 6.23E+02 | 1.78E+01 | 6.00E+02 | 1.62E+01 | + |
F28 | 4.62E+02 | 1.10E+01 | 4.59E+02 | 1.74E-13 | - | 5.26E+02 | 1.76E+01 | 5.28E+02 | 2.55E+01 | = |
F29 | 3.03E+02 | 8.30E+00 | 3.00E+02 | 5.68E+00 | + | 8.01E+02 | 1.24E+02 | 7.73E+02 | 1.32E+02 | = |
F30 | 6.67E+05 | 7.97E+04 | 6.15E+05 | 5.03E+04 | + | 2.35E+03 | 1.20E+02 | 2.29E+03 | 1.18E+02 | + |
/− | 9/13/7 | 15/9/5 |
Function | EJADE | jSO | L-SHADE-RSP | DISH | SCSS-L-SHADE | DTDE-Div | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean (Std) | Sig | Mean (Std) | Sig | Mean (Std) | Sig | Mean (Std) | Sig | Mean (Std) | Sig | Mean (Std) | |
F1 | 2.13E-10(1.52E-09) | - | 0.00E+00(0.00E+00) | - | 0.00E+00(0.00E+00) | - | 2.17E-08(3.29E-08) | - | 0.00E+00(0.00E+00) | - | 1.59E-04(5.06E-04) |
F3 | 4.13E+03(4.65E+03) | = | 3.16E-06(3.29E-06) | - | 2.16E-07(2.50E-07) | - | 3.30E-05(2.55E-05) | - | 1.39E-04(1.60E-04) | - | 1.01E-04(2.80E-04) |
F4 | 5.19E+01(6.85E+01) | = | 1.98E+02(1.10E+01) | - | 1.99E+02(9.27E+00) | - | 1.98E+02(9.30E+00) | - | 1.98E+02(8.13E+00) | = | 5.84E+01(4.61E+01) |
F5 | 1.23E+02(2.14E+01) | + | 3.80E+01(6.66E+00) | + | 3.10E+01(6.16E+00) | + | 2.71E+01(1.02E+01) | + | 2.81E+01(3.98E+00) | + | 2.09E+00(1.44E+00) |
F6 | 5.36E-02(4.27E-02) | + | 1.93E-04(4.77E-04) | + | 1.89E-05(1.62E-05) | = | 4.98E-06(4.24E-06) | - | 1.76E-03(1.35E-03) | + | 1.69E-06(2.35E-06) |
F7 | 2.21E+02(1.92E+01) | + | 1.42E+02(9.05E+00) | + | 1.38E+02(7.53E+00) | + | 1.39E+02(7.75E+00) | + | 1.32E+02(4.37E+00) | + | 5.70E+01(9.27E-01) |
F8 | 1.15E+02(1.90E+01) | + | 3.75E+01(9.16E+00) | + | 2.87E+01(7.41E+00) | + | 2.67E+01(1.00E+01) | + | 2.85E+01(3.88E+00) | + | 2.19E+00(1.73E+00) |
F9 | 2.71E+01(1.77E+01) | + | 8.78E-03(2.69E-02) | = | 3.51E-03(1.76E-02) | = | 0.00E+00(0.00E+00) | = | 8.84E-02(1.74E-01) | + | 1.11E-13(1.59E-14) |
F10 | 1.02E+04(1.13E+03) | + | 1.09E+04(6.89E+02) | + | 1.07E+04(7.49E+02) | + | 1.11E+04(6.73E+02) | + | 9.72E+03(5.38E+02) | + | 1.50E+02(9.90E+01) |
F11 | 4.14E+02(3.13E+02) | + | 8.48E+01(2.83E+01) | - | 7.71E+01(2.79E+01) | - | 5.52E+01(3.15E+01) | - | 1.74E+02(5.61E+01) | + | 2.42E+01(2.90E+00) |
F12 | 3.30E+04(1.99E+04) | - | 1.83E+04(7.90E+03) | - | 1.28E+04(4.90E+03) | - | 1.31E+04(6.46E+03) | - | 1.61E+04(6.42E+03) | - | 1.55E+03(4.25E+02) |
F13 | 5.48E+02(5.67E+02) | + | 1.60E+02(4.74E+01) | = | 1.33E+02(4.26E+01) | - | 1.17E+02(3.57E+01) | - | 1.73E+02(4.85E+01) | + | 4.56E+01(2.40E+01) |
F14 | 3.24E+02(2.44E+02) | + | 5.35E+01(8.44E+00) | + | 4.54E+01(7.10E+00) | = | 3.87E+01(4.50E+00) | - | 8.63E+01(1.35E+01) | + | 3.01E+01(3.25E+00) |
F15 | 5.00E+02(4.87E+02) | + | 1.71E+02(4.20E+01) | = | 1.28E+02(3.67E+01) | - | 1.20E+02(3.82E+01) | - | 2.43E+02(4.83E+01) | + | 2.51E+01(2.76E+00) |
F16 | 1.99E+03(5.78E+02) | + | 1.74E+03(3.22E+02) | + | 1.64E+03(3.67E+02) | + | 1.85E+03(2.80E+02) | + | 1.56E+03(2.23E+02) | + | 1.46E+02(6.81E+01) |
F17 | 1.60E+03(3.55E+02) | + | 1.23E+03(2.56E+02) | + | 1.13E+03(2.44E+02) | + | 1.25E+03(2.60E+02) | + | 9.92E+02(2.18E+02) | + | 5.28E+01(5.47E+01) |
F18 | 3.22E+03(3.38E+03) | + | 1.71E+02(3.44E+01) | = | 1.57E+02(3.95E+01) | - | 1.14E+02(2.40E+01) | - | 2.02E+02(4.15E+01) | + | 4.69E+01(1.04E+01) |
F19 | 1.71E+02(6.74E+01) | + | 9.48E+01(1.78E+01) | + | 6.36E+01(9.72E+00) | + | 5.70E+01(6.88E+00) | + | 1.65E+02(2.64E+01) | + | 9.76E+00(2.01E+00) |
F20 | 1.68E+03(4.33E+02) | + | 1.55E+03(2.17E+02) | + | 1.36E+03(2.44E+02) | + | 1.56E+03(3.01E+02) | + | 1.51E+03(1.70E+02) | + | 2.29E+01(1.93E+00) |
F21 | 3.38E+02(2.03E+01) | + | 2.55E+02(8.25E+00) | + | 2.51E+02(7.26E+00) | + | 2.47E+02(6.90E+00) | + | 2.52E+02(5.02E+00) | + | 2.04E+02(2.08E+00) |
F22 | 1.10E+04(1.44E+03) | + | 1.15E+04(1.79E+03) | + | 1.10E+04(7.98E+02) | + | 1.16E+04(1.78E+03) | + | 1.08E+04(1.28E+03) | + | 3.09E+02(1.18E+02) |
F23 | 6.29E+02(1.74E+01) | + | 5.69E+02(9.31E+00) | + | 5.64E+02(9.87E+00) | + | 5.64E+02(9.40E+00) | + | 5.58E+02(9.86E+00) | + | 4.19E+02(6.91E+00) |
F24 | 9.83E+02(2.51E+01) | + | 8.99E+02(7.72E+00) | + | 8.97E+02(6.10E+00) | + | 8.94E+02(6.85E+00) | + | 9.02E+02(6.90E+00) | + | 4.98E+02(2.32E+00) |
F25 | 7.53E+02(5.17E+01) | + | 7.33E+02(3.84E+01) | + | 7.26E+02(3.82E+01) | = | 6.99E+02(5.12E+01) | = | 7.35E+02(4.40E+01) | + | 4.80E+02(1.62E+00) |
F26 | 4.10E+03(2.00E+02) | + | 3.20E+03(1.02E+02) | + | 3.15E+03(8.76E+01) | + | 3.09E+03(8.73E+01) | + | 3.21E+03(6.93E+01) | + | 9.08E+02(8.73E+01) |
F27 | 6.54E+02(2.33E+01) | + | 5.84E+02(2.17E+01) | - | 5.84E+02(1.75E+01) | - | 5.72E+02(1.78E+01) | - | 6.25E+02(1.88E+01) | + | 5.15E+02(7.52E+00) |
F28 | 5.17E+02(4.56E+01) | = | 5.24E+02(1.67E+01) | = | 5.29E+02(2.46E+01) | = | 5.22E+02(1.99E+01) | - | 5.29E+02(2.36E+01) | = | 4.60E+02(5.68E+00) |
F29 | 1.64E+03(4.21E+02) | + | 1.27E+03(1.82E+02) | + | 1.23E+03(1.76E+02) | + | 1.31E+03(2.29E+02) | + | 1.26E+03(1.83E+02) | + | 3.05E+02(7.46E+00) |
F30 | 2.53E+03(2.02E+02) | + | 2.35E+03(1.46E+02) | = | 2.36E+03(1.70E+02) | = | 2.30E+03(1.24E+02) | = | 2.33E+03(1.15E+02) | = | 6.15E+05(3.79E+04) |
/− | 24/3/2 | 17/6/6 | 14/6/9 | 14/3/12 | 23/3/3 |
Algorithm | EJADE | jSO | L-SHADE-RSP | DISH | SCSS-L-SHADE | DTDE-Div |
---|---|---|---|---|---|---|
Performance ranking | 5.36 | 3.74 | 2.80 | 2.88 | 3.63 | 2.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, R.; Zheng, L.; Jin, X. Parameter Adaptive Differential Evolution Based on Individual Diversity. Symmetry 2025, 17, 1016. https://doi.org/10.3390/sym17071016
Yan R, Zheng L, Jin X. Parameter Adaptive Differential Evolution Based on Individual Diversity. Symmetry. 2025; 17(7):1016. https://doi.org/10.3390/sym17071016
Chicago/Turabian StyleYan, Rongle, Liming Zheng, and Xiaolin Jin. 2025. "Parameter Adaptive Differential Evolution Based on Individual Diversity" Symmetry 17, no. 7: 1016. https://doi.org/10.3390/sym17071016
APA StyleYan, R., Zheng, L., & Jin, X. (2025). Parameter Adaptive Differential Evolution Based on Individual Diversity. Symmetry, 17(7), 1016. https://doi.org/10.3390/sym17071016