Symmetries of Multipartite Weyl Quantum Channels
Abstract
:1. Introduction
2. Weyl Channels
3. Hermitian Representation of Mirrored Symmetric Channels
4. Multipartite Channels
5. Power of Prime Dimension: A Case Study
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Proof of Proposition 1
Appendix B. Proof of Proposition 4
Appendix C. Qkℓ and Operators for d = 22
References
- Paulsen, V. Completely Bounded Maps and Operator Algebras; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Størmer, E. Positive Linear Maps of Operator Algebras; SpringerMonographs in Mathematics; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Bhatia, R. Positive Definite Matrices. In Princeton Series in Applied Mathematics; Princeton University Press: Princeton, NJ, USA, 2015. [Google Scholar]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Scutaru, H. Some remarks on covariant completely positive linear maps on C*-algebras. Rep. Math. Phys. 1979, 16, 79. [Google Scholar] [CrossRef]
- Holevo, A.S. A note on covariant dynamical semigroups. Rep. Math. Phys. 1993, 32, 211. [Google Scholar] [CrossRef]
- Holevo, A.S. Covariant quantum markovian evolutions. J. Math. Phys. 1996, 37, 1812. [Google Scholar] [CrossRef]
- Nuwairan, M.A. The extreme points of SU(2)-irreducibly covariant channels. Int. J. Math. 2014, 25, 1450048. [Google Scholar] [CrossRef]
- Mozrzymas, M.; Studziński, M.; Datta, N. Structure of irreducibly covariant quantum channels for finite groups. J. Math. Phys. 2017, 58, 052204. [Google Scholar] [CrossRef]
- Siudzińska, K.; Chruściński, D. Quantum channels irreducibly covariant with respect to the finite group generated by the Weyl operators. J. Math. Phys. 2018, 59, 033508. [Google Scholar] [CrossRef]
- Memarzadeh, L.; Sanders, B.C. Group-covariant extreme and quasiextreme channels. Phys. Rev. Res. 2022, 4, 033206. [Google Scholar] [CrossRef]
- Chruściński, D.; Bhattacharya, B. A class of Schwarz qubit maps with diagonal unitary and orthogonal symmetries. J. Phys. A Math. Theor. 2024, 57, 395202. [Google Scholar] [CrossRef]
- Wootters, W.K.; Fields, B.D. Optimal state-determination by mutually unbiased measurements. Ann. Phys. 1989, 191, 363. [Google Scholar] [CrossRef]
- Durt, T.; Englert, B.-G.; Bengtsson, I.; Zyczkowski, K. On Mutually Unbiased Bases. Int. J. Quantum. Inform. 2010, 8, 535. [Google Scholar] [CrossRef]
- Chruściński, D.; Siudzińska, K. Generalized Pauli channels and a class of non-Markovian quantum evolution. Phys. Rev. A 2016, 94, 022118. [Google Scholar] [CrossRef]
- Nathanson, M.; Ruskai, M.B. Pauli Diagonal Channels Constant on Axes. J. Phys. A 2007, 40, 8171. [Google Scholar] [CrossRef]
- Petz, D.; Ohno, H. Generalizations of Pauli channels. Acta Math. Hung. 2009, 124, 165. [Google Scholar]
- Asadian, A.; Erker, P.; Huber, M.; Klöck, C. Heisenberg-Weyl Observables: Bloch vectors in phase space. Phys. Rev. A 2016, 94, 010301. [Google Scholar] [CrossRef]
- Schwinger, J. Unitary operator bases. Proc. Natl. Acad. Sci. USA 1960, 46, 570. [Google Scholar] [CrossRef]
- Bertlmann, R.A.; Krammer, P.J. Bloch vectors for qudits. Phys. A Math. Theor. 2008, 41, 235303. [Google Scholar] [CrossRef]
- Vourdas, A. Quantum systems with finite Hilbert space. Rep. Prog. Phys. 2004, 67, 267. [Google Scholar] [CrossRef]
- Popp, C.; Hiesmayr, B.C. Special features of the Weyl–Heisenberg Bell basis imply unusual entanglement structure of Bell-diagonal states. New J. Phys. 2024, 26, 013039. [Google Scholar] [CrossRef]
- Baumgartner, B.; Hiesmayr, B.C.; Narnhofer, H. State space for two qutrits has a phase space structure in its core. Phys. Rev. A 2006, 74, 032327. [Google Scholar] [CrossRef]
- Palici, A.M.; Isdraila, T.-A.; Ataman, S.; Ionicioiu, R. OAM tomography with Heisenberg–Weyl observables. Quantum Sci. Technol. 2022, 5, 045004. [Google Scholar] [CrossRef]
- Kakihara, Y.; Yamamoto, D.; Marmorini, G. Compressed sensing quantum state tomography for qudits: A comparison of Gell-Mann and Heisenberg-Weyl observable bases. arXiv 2025, arXiv:2505.10462. [Google Scholar]
- Sharma, G.; Ghosh, S.; Sazim, S.K. Bloch sphere analog of qudits using Heisenberg-Weyl Operators. Phys. Scr. 2024, 99, 045105. [Google Scholar] [CrossRef]
- Watrous, J. The Theory of Quantum Information; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Gilchrist, A.; Terno, D.R.; Wood, C.J. Vectorization of quantum operations and its use. arXiv 2011, arXiv:0911.2539v2. [Google Scholar]
- Basile, T.; de Leon, J.A.; Fonseca, A.; Leyvraz, F.; Pineda, C. Weyl channels for multipartite systems. Phys. Rev. A 2024, 109, 032607. [Google Scholar] [CrossRef]
- Lidl, R.; Niederreiter, H. Introduction to Finite Fields and their Applications; Cambridge University Press: Cambridge, UK, 1986. [Google Scholar]
- Gibbons, K.S.; Hoffman, M.J.; Wootters, W.K. Discrete phase space based on finite fields. Phys. Rev. A 2004, 70, 062101. [Google Scholar] [CrossRef]
- Chruściński, D.; Wudarski, F. Non-Markovian random unitary qubit dynamics. Phys. Lett. A 2013, 377, 1425. [Google Scholar] [CrossRef]
- Chruściński, D.; Wudarski, F. Non-Markovianity degree for random unitary evolution. Phys. Rev. A 2015, 91, 012104. [Google Scholar] [CrossRef]
- Xu, W.; Li, M.; Li, B.; Jia, G.; Zheng, Z. The quantum non-Markovianity for a special class of generalized Weyl channel. arXiv 2025, arXiv:2503.10338. [Google Scholar] [CrossRef]
- Holevo, A.S. Quantum Systems, Channels, Information: A Mathematical Introduction; De Gruyter: Berlin, Germany, 2012. [Google Scholar]
- Weedbrook, C.; Pirandola, S.; García-Patrón, R.; Cerf, N.J.; Ralph, T.C.; Shapiro, J.H.; Lloyd, S. Gaussian quantum information. Rev. Mod. Phys. 2012, 84, 621. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chruściński, D.; Bhattacharya, B.; Patra, S. Symmetries of Multipartite Weyl Quantum Channels. Symmetry 2025, 17, 943. https://doi.org/10.3390/sym17060943
Chruściński D, Bhattacharya B, Patra S. Symmetries of Multipartite Weyl Quantum Channels. Symmetry. 2025; 17(6):943. https://doi.org/10.3390/sym17060943
Chicago/Turabian StyleChruściński, Dariusz, Bihalan Bhattacharya, and Saikat Patra. 2025. "Symmetries of Multipartite Weyl Quantum Channels" Symmetry 17, no. 6: 943. https://doi.org/10.3390/sym17060943
APA StyleChruściński, D., Bhattacharya, B., & Patra, S. (2025). Symmetries of Multipartite Weyl Quantum Channels. Symmetry, 17(6), 943. https://doi.org/10.3390/sym17060943