Identification of Source Term from Part of the Boundary Conditions
Abstract
1. Introduction
2. Formulation of the Inverse Source Problem
3. Transformation of the Problem
4. The MFS and the Tikhonov Regularization
5. Numerical Experiments
- (1)
- the root-mean square deviation
- (2)
- the relative root-mean square deviation
5.1. One-Dimensional Examples
5.2. Two-Dimensional Example
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rissaki, D.K.; Vasileiou, A.N.; Benardos, P.G.; Vosniakos, G.C.; Smith, M.C. The general solution of the inverse heat source calibration problem in weld modelling. Int. J. Heat Mass Transf. 2025, 249, 127151. [Google Scholar] [CrossRef]
- Rissaki, D.K.; Vasileiou, A.N.; Smith, M.C.; Muránsky, O.; Benardos, P.G.; Vosniakos, G.C. Establishing an automated heat-source calibration framework. In Mathematical Modelling of Weld Phenomena; CRC Press: Boca Raton, FL, USA, 2023; pp. 221–236. [Google Scholar]
- Lee, J.W.; Ahn, C.; Park, J.; Kim, H.; Park, C.; Park, D.; Kim, J. Heat source and internal temperature estimation of an integrated modular motor drive in robotic application using inverse heat conduction problem. Measurement 2025, 243, 116297. [Google Scholar] [CrossRef]
- Zhang, T.T.; Yuan, H.; Wang, F.; Long, Z.; Chen, Q.Y. Inverse identification of a pollutant source in an apartment with multiple rooms by joint multi-zone model and CFD. Sustain. Cities Soc. 2024, 113, 105633. [Google Scholar] [CrossRef]
- Moghaddam, M.B.; Mazaheri, M.; Samani, J.M. Inverse modeling of contaminant transport for pollution source identification in surface and groundwaters: A review. Groundw. Sustain. Dev. 2021, 15, 100651. [Google Scholar] [CrossRef]
- Isakov, V. Inverse Source Problems, Volume 34 of Mathematical Surveys and Monographs; American Mathematical Society: Providence, RI, USA, 1990. [Google Scholar]
- Cannon, J.R.; Pérez Esteva, S. Uniqueness and stability of 3D heat sources. Inverse Probl. 1991, 7, 57–62. [Google Scholar] [CrossRef]
- Choulli, M.; Yamamoto, M. Conditional stability in determining a heat source. J. Inverse Ill-Posed Probl. 2004, 12, 233–243. [Google Scholar] [CrossRef]
- Cheng, J.; Liu, J.J. An inverse source problem for parabolic equations with local measurements. App. Math. Lett. 2020, 103, 106213. [Google Scholar] [CrossRef]
- Ait Ben Hassi, E.M.; Chorfi, S.E.; Maniar, L. Identification of source terms in heat equation with dynamic boundary conditions. Math. Methods Appl. Sci. 2021, 45, 2364–2379. [Google Scholar] [CrossRef]
- Chorfi, S.E.; Hasanov, A.; Morales, R. Identification of source terms in the Schrödinger equation with dynamic boundary conditions from final data. arXiv 2024, arXiv:2410.21123. [Google Scholar] [CrossRef]
- Trong, D.D.; Quan, P.H.; Alain, P.N.D. Determination of a two-dimensional heat source: Uniqueness, regularization and error estimate. J. Comput. Appl. Math. 2006, 191, 50–67. [Google Scholar] [CrossRef]
- Dou, F.F.; Fu, C.L.; Yang, F.L. Optimal error bound and Fourier regularization for identifying an unknown source in the heat equation. J. Comput. Appl. Math. 2009, 230, 728–737. [Google Scholar] [CrossRef]
- Yang, F.; Fu, C.L. A simplified Tikhonov regularization method for determining the heat source. Appl. Math. Model. 2010, 34, 3286–3299. [Google Scholar] [CrossRef]
- Yang, F.; Ren, Y.P.; Li, X.X. Landweber iteration regularization method for identifying unknown source on a columnar symmetric domain. Inverse Probl. Sci. Eng. 2017, 26, 1109–1129. [Google Scholar] [CrossRef]
- Fatullayev, A.G. Numerical solution of the inverse problem of determining an unknown source term in a heat equation. Math. Comput. Simul. 2002, 58, 247–253. [Google Scholar] [CrossRef]
- Fatullayev, A.G. Numerical solution of the inverse problem of determining an unknown source term in a two-dimensional heat equation. Appl. Math. Comput. 2004, 152, 659–666. [Google Scholar] [CrossRef]
- Johansson, B.T.; Lesnic, D. A variational method for identifying a spacewise-dependent heat source. IMA J. Appl. Math. 2007, 72, 748–760. [Google Scholar] [CrossRef]
- Ma, Y.J.; Fu, C.L.; Zhang, Y.X. Identification of an unknown source depending on both time and space variables by a variational method. Appl. Math. Model. 2012, 36, 5080–5090. [Google Scholar] [CrossRef]
- Johansson, B.T.; Lesnic, D. A procedure for determining a spacewise dependent heat source and initial temperature. App. Anal. 2008, 87, 265–276. [Google Scholar] [CrossRef]
- Sazaklioglu, A.U. An iterative numerical method for an inverse source problem for a multidimensional nonlinear parabolic equation. Appl. Numer. Math. 2024, 198, 428–447. [Google Scholar] [CrossRef]
- Farcas, A.; Lesnic, D. The boundary-element method for the determination of a heat source dependent on one variable. J. Eng. Math. 2006, 54, 375–388. [Google Scholar] [CrossRef]
- Karami, G.; Hematiyan, M.R. A boundary element method of inverse non-linear heat conduction analysis with point and line heat sources. Commun. Numer. Meth. Eng. 2000, 16, 191–203. [Google Scholar] [CrossRef]
- Yan, L.; Fu, C.L.; Yang, F.L. The method of fundamental solutions for the inverse heat source problem. Eng. Anal. Bound. Elem. 2008, 32, 216–222. [Google Scholar] [CrossRef]
- Yan, L.; Yang, F.L.; Fu, C.L. A meshless method for solving an inverse spacewise-dependent heat source problem. J. Comput. Phys. 2009, 228, 123–136. [Google Scholar] [CrossRef]
- Hon, Y.C.; Wei, T. A fundamental solution method for inverse heat conduction problem. Eng. Anal. Bound. Elem. 2004, 28, 489–495. [Google Scholar] [CrossRef]
- Isakov, V. Inverse Problems for Partial Differential Equations, Volume 127 of Applied Mathematical Sciences; Springer Science+Business Media: NewYork, NY, USA, 2006. [Google Scholar]
- Zureigat, H.; Tashtoush, M.A.; Jassar, A.F.; Az-Zo’bi, E.A.; Alomari, M.W. A solution of the complex fuzzy heat equation in terms of complex Dirichlet conditions using a modified Crank–Nicolson method. Adv. Math. Phys. 2023, 2023, 6505227. [Google Scholar] [CrossRef]
11 | 21 | 31 | 41 | 51 | 61 | |
RES(f) | 0.3116 | 0.0930 | 0.0677 | 0.0577 | 0.1579 | 0.1469 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y. Identification of Source Term from Part of the Boundary Conditions. Symmetry 2025, 17, 894. https://doi.org/10.3390/sym17060894
Ma Y. Identification of Source Term from Part of the Boundary Conditions. Symmetry. 2025; 17(6):894. https://doi.org/10.3390/sym17060894
Chicago/Turabian StyleMa, Yunjie. 2025. "Identification of Source Term from Part of the Boundary Conditions" Symmetry 17, no. 6: 894. https://doi.org/10.3390/sym17060894
APA StyleMa, Y. (2025). Identification of Source Term from Part of the Boundary Conditions. Symmetry, 17(6), 894. https://doi.org/10.3390/sym17060894