Identification of Source Term from Part of the Boundary Conditions
Abstract
:1. Introduction
2. Formulation of the Inverse Source Problem
3. Transformation of the Problem
4. The MFS and the Tikhonov Regularization
5. Numerical Experiments
- (1)
- the root-mean square deviation
- (2)
- the relative root-mean square deviation
5.1. One-Dimensional Examples
5.2. Two-Dimensional Example
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rissaki, D.K.; Vasileiou, A.N.; Benardos, P.G.; Vosniakos, G.C.; Smith, M.C. The general solution of the inverse heat source calibration problem in weld modelling. Int. J. Heat Mass Transf. 2025, 249, 127151. [Google Scholar] [CrossRef]
- Rissaki, D.K.; Vasileiou, A.N.; Smith, M.C.; Muránsky, O.; Benardos, P.G.; Vosniakos, G.C. Establishing an automated heat-source calibration framework. In Mathematical Modelling of Weld Phenomena; CRC Press: Boca Raton, FL, USA, 2023; pp. 221–236. [Google Scholar]
- Lee, J.W.; Ahn, C.; Park, J.; Kim, H.; Park, C.; Park, D.; Kim, J. Heat source and internal temperature estimation of an integrated modular motor drive in robotic application using inverse heat conduction problem. Measurement 2025, 243, 116297. [Google Scholar] [CrossRef]
- Zhang, T.T.; Yuan, H.; Wang, F.; Long, Z.; Chen, Q.Y. Inverse identification of a pollutant source in an apartment with multiple rooms by joint multi-zone model and CFD. Sustain. Cities Soc. 2024, 113, 105633. [Google Scholar] [CrossRef]
- Moghaddam, M.B.; Mazaheri, M.; Samani, J.M. Inverse modeling of contaminant transport for pollution source identification in surface and groundwaters: A review. Groundw. Sustain. Dev. 2021, 15, 100651. [Google Scholar] [CrossRef]
- Isakov, V. Inverse Source Problems, Volume 34 of Mathematical Surveys and Monographs; American Mathematical Society: Providence, RI, USA, 1990. [Google Scholar]
- Cannon, J.R.; Pérez Esteva, S. Uniqueness and stability of 3D heat sources. Inverse Probl. 1991, 7, 57–62. [Google Scholar] [CrossRef]
- Choulli, M.; Yamamoto, M. Conditional stability in determining a heat source. J. Inverse Ill-Posed Probl. 2004, 12, 233–243. [Google Scholar] [CrossRef]
- Cheng, J.; Liu, J.J. An inverse source problem for parabolic equations with local measurements. App. Math. Lett. 2020, 103, 106213. [Google Scholar] [CrossRef]
- Ait Ben Hassi, E.M.; Chorfi, S.E.; Maniar, L. Identification of source terms in heat equation with dynamic boundary conditions. Math. Methods Appl. Sci. 2021, 45, 2364–2379. [Google Scholar] [CrossRef]
- Chorfi, S.E.; Hasanov, A.; Morales, R. Identification of source terms in the Schrödinger equation with dynamic boundary conditions from final data. arXiv 2024, arXiv:2410.21123. [Google Scholar] [CrossRef]
- Trong, D.D.; Quan, P.H.; Alain, P.N.D. Determination of a two-dimensional heat source: Uniqueness, regularization and error estimate. J. Comput. Appl. Math. 2006, 191, 50–67. [Google Scholar] [CrossRef]
- Dou, F.F.; Fu, C.L.; Yang, F.L. Optimal error bound and Fourier regularization for identifying an unknown source in the heat equation. J. Comput. Appl. Math. 2009, 230, 728–737. [Google Scholar] [CrossRef]
- Yang, F.; Fu, C.L. A simplified Tikhonov regularization method for determining the heat source. Appl. Math. Model. 2010, 34, 3286–3299. [Google Scholar] [CrossRef]
- Yang, F.; Ren, Y.P.; Li, X.X. Landweber iteration regularization method for identifying unknown source on a columnar symmetric domain. Inverse Probl. Sci. Eng. 2017, 26, 1109–1129. [Google Scholar] [CrossRef]
- Fatullayev, A.G. Numerical solution of the inverse problem of determining an unknown source term in a heat equation. Math. Comput. Simul. 2002, 58, 247–253. [Google Scholar] [CrossRef]
- Fatullayev, A.G. Numerical solution of the inverse problem of determining an unknown source term in a two-dimensional heat equation. Appl. Math. Comput. 2004, 152, 659–666. [Google Scholar] [CrossRef]
- Johansson, B.T.; Lesnic, D. A variational method for identifying a spacewise-dependent heat source. IMA J. Appl. Math. 2007, 72, 748–760. [Google Scholar] [CrossRef]
- Ma, Y.J.; Fu, C.L.; Zhang, Y.X. Identification of an unknown source depending on both time and space variables by a variational method. Appl. Math. Model. 2012, 36, 5080–5090. [Google Scholar] [CrossRef]
- Johansson, B.T.; Lesnic, D. A procedure for determining a spacewise dependent heat source and initial temperature. App. Anal. 2008, 87, 265–276. [Google Scholar] [CrossRef]
- Sazaklioglu, A.U. An iterative numerical method for an inverse source problem for a multidimensional nonlinear parabolic equation. Appl. Numer. Math. 2024, 198, 428–447. [Google Scholar] [CrossRef]
- Farcas, A.; Lesnic, D. The boundary-element method for the determination of a heat source dependent on one variable. J. Eng. Math. 2006, 54, 375–388. [Google Scholar] [CrossRef]
- Karami, G.; Hematiyan, M.R. A boundary element method of inverse non-linear heat conduction analysis with point and line heat sources. Commun. Numer. Meth. Eng. 2000, 16, 191–203. [Google Scholar] [CrossRef]
- Yan, L.; Fu, C.L.; Yang, F.L. The method of fundamental solutions for the inverse heat source problem. Eng. Anal. Bound. Elem. 2008, 32, 216–222. [Google Scholar] [CrossRef]
- Yan, L.; Yang, F.L.; Fu, C.L. A meshless method for solving an inverse spacewise-dependent heat source problem. J. Comput. Phys. 2009, 228, 123–136. [Google Scholar] [CrossRef]
- Hon, Y.C.; Wei, T. A fundamental solution method for inverse heat conduction problem. Eng. Anal. Bound. Elem. 2004, 28, 489–495. [Google Scholar] [CrossRef]
- Isakov, V. Inverse Problems for Partial Differential Equations, Volume 127 of Applied Mathematical Sciences; Springer Science+Business Media: NewYork, NY, USA, 2006. [Google Scholar]
- Zureigat, H.; Tashtoush, M.A.; Jassar, A.F.; Az-Zo’bi, E.A.; Alomari, M.W. A solution of the complex fuzzy heat equation in terms of complex Dirichlet conditions using a modified Crank–Nicolson method. Adv. Math. Phys. 2023, 2023, 6505227. [Google Scholar] [CrossRef]
11 | 21 | 31 | 41 | 51 | 61 | |
RES(f) | 0.3116 | 0.0930 | 0.0677 | 0.0577 | 0.1579 | 0.1469 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y. Identification of Source Term from Part of the Boundary Conditions. Symmetry 2025, 17, 894. https://doi.org/10.3390/sym17060894
Ma Y. Identification of Source Term from Part of the Boundary Conditions. Symmetry. 2025; 17(6):894. https://doi.org/10.3390/sym17060894
Chicago/Turabian StyleMa, Yunjie. 2025. "Identification of Source Term from Part of the Boundary Conditions" Symmetry 17, no. 6: 894. https://doi.org/10.3390/sym17060894
APA StyleMa, Y. (2025). Identification of Source Term from Part of the Boundary Conditions. Symmetry, 17(6), 894. https://doi.org/10.3390/sym17060894