Statistical Inference of Inverse Weibull Distribution Under Joint Progressive Censoring Scheme
Abstract
:1. Introduction
2. The Joint Progressive Type II Censor Scheme and Maximum Likelihood Estimation
2.1. Model Description
2.2. Maximum Likelihood Estimation
3. Approximate Confidence Interval
4. Bootstrap Confidence Intervals
Algorithm 1 Generation process of Boot-P CIs |
|
Algorithm 2 Generation process of Boot-T CIs |
|
5. Bayesian Inference
5.1. Prior and Posterior Distribution
5.2. Loss Functions
5.3. Metropolis–Hastings Algorithm
Algorithm 3 Generating samples following the posterior distribution. |
|
6. Simulation Study
Algorithm 4 The algorithm to generate samples under the JPC scheme. |
|
7. Real-Data Analysis
7.1. Example 1
7.2. Example 2
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
r | SE | LINEX (a = −2) | LINEX (a = 2) | |||||
---|---|---|---|---|---|---|---|---|
ABE (MSE) | AL (CP) | ABE (MSE) | AL (CP) | ABE (MSE) | AL (CP) | |||
(20, 20) | 20 | (, 20) | 2.0450 | 1.0578 | 2.0809 | 1.0693 | 1.9500 | 1.0111 |
(0.4506) | (89.8%) | (0.4816) | (79.6%) | (0.4609) | (81.5%) | |||
(, 5, 15) | 2.1021 | 1.0609 | 2.1178 | 1.0927 | 2.1783 | 1.0453 | ||
(0.4411) | (87.8%) | (0.4668) | (81.6%) | (0.4431) | (83.7%) | |||
30 | (, 10) | 1.9845 | 1.0349 | 2.0268 | 1.0534 | 2.0539 | 1.0484 | |
(0.4671) | (83.7%) | (0.4497) | (81.6%) | (0.4357) | (91.8%) | |||
(, 8, 2) | 2.0108 | 1.0205 | 2.0720 | 1.0617 | 2.0798 | 1.0027 | ||
(0.4473) | (81.6%) | (0.4538) | (79.6%) | (0.4315) | (83.6%) | |||
(20, 30) | 30 | (, 20) | 1.9817 | 0.9924 | 1.9778 | 0.9908 | 2.0006 | 1.0493 |
(0.4466) | (87.6%) | (0.4440) | (82.6%) | (0.4557) | (81.6%) | |||
(, 15, 5) | 2.0685 | 1.0816 | 2.0401 | 1.1127 | 2.1827 | 1.0594 | ||
(0.4478) | (87.8%) | (0.4863) | (79.6%) | (0.4652) | (79.9%) | |||
40 | (, 10) | 2.04347 | 1.0405 | 2.0923 | 0.9916 | 1.9950 | 1.0081 | |
(0.4413) | (83.7%) | (0.4240) | (79.6%) | (0.4425) | (81.6%) | |||
(, 5, 5) | 2.1766 | 1.0795 | 2.1314 | 1.0499 | 2.1675 | 1.0308 | ||
(0.4463) | (89.8%) | (0.4631) | (83.7%) | (0.4570) | (83.7%) | |||
(30, 30) | 30 | (, 30) | 2.0053 | 0.9472 | 1.9902 | 1.0067 | 1.9895 | 0.9612 |
(0.4272) | (75.51%) | (0.4457) | (77.55%) | (0.4396) | (75.51%) | |||
(, 20, 10) | 2.0856 | 1.0137 | 2.0936 | 1.0367 | 2.1222 | 1.0803 | ||
(0.4360) | (86.6%) | (0.4442) | (81.6%) | (0.4659) | (81.6%) | |||
40 | (, 20) | 1.9899 | 0.9520 | 2.0082 | 0.9922 | 2.0309 | 1.0350 | |
(0.4474) | (79.4%) | (0.4364) | (83.3%) | (0.4418) | (79.6%) | |||
(, 20, 0) | 2.0348 | 1.0415 | 1.9278 | 1.0335 | 2.0416 | 1.0677 | ||
(0.4396) | (75.5%) | (0.4337) | (79.6%) | (0.4442) | (87.8%) | |||
(30, 40) | 40 | (, 30) | 1.9494 | 1.0339 | 2.0150 | 1.0022 | 1.9939 | 1.0178 |
(0.4650) | (83.7%) | (0.4368) | (85.7%) | (0.4475) | (79.5%) | |||
(, 29, 1) | 2.0865 | 1.0234 | 2.0493 | 1.0191 | 1.9992 | 1.0813 | ||
(0.4341) | (77.5%) | (0.4269) | (83.7%) | (0.4478) | (85.5%) | |||
50 | (, 20) | 1.9888 | 1.0524 | 2.0223 | 0.9736 | 1.9990 | 1.0195 | |
(0.4689) | (77.6%) | (0.4222) | (81.4%) | (0.4347) | (83.7%) | |||
(, 15, 5) | 2.0936 | 1.0050 | 2.0224 | 1.0218 | 2.0535 | 0.9626 | ||
(0.4542) | (83.5%) | (0.4452) | (83.7%) | (0.4511) | (87.3%) | |||
(40, 50) | 50 | (, 40) | 1.9598 | 1.0426 | 2.0210 | 1.0241 | 2.0131 | 1.0456 |
(0.4476) | (81.6%) | (0.4403) | (82.6%) | (0.4434) | (83.7%) | |||
(, 35, 5) | 2.0447 | 1.0120 | 2.0411 | 1.0143 | 2.1582 | 1.0381 | ||
(0.4362) | (89.6%) | (0.4293) | (87.6%) | (0.4232) | (85.7%) | |||
60 | (, 30) | 1.9892 | 0.9726 | 2.0064 | 0.9821 | 2.0210 | 1.0211 | |
(0.4316) | (82.3%) | (0.4224) | (81.6%) | (0.4438) | (81.6%) | |||
(, 25, 5) | 2.1037 | 1.0502 | 2.1364 | 1.1039 | 2.0656 | 1.0532 | ||
(0.4493) | (79.5%) | (0.4643) | (85.7%) | (0.4398) | (85.7%) |
r | SE | LINEX (a = −2) | LINEX (a = 2) | |||||
---|---|---|---|---|---|---|---|---|
ABE (MSE) | AL (CP) | ABE (MSE) | AL (CP) | ABE (MSE) | AL (CP) | |||
(20, 20) | 20 | (, 20) | 0.9937 | 1.0954 | 1.0039 | 1.0611 | 1.0180 | 1.0334 |
(0.5189) | (83.7%) | (0.4993) | (79.4%) | (0.4800) | (76.4%) | |||
(, 5, 15) | 0.9781 | 1.0944 | 0.9458 | 1.0991 | 1.0212 | 1.1931 | ||
(0.4930) | (83.7%) | (0.5209) | (77.6%) | (0.6462) | (79.3%) | |||
30 | (, 10) | 0.9949 | 1.0573 | 1.0050 | 0.9868 | 0.9992 | 1.0741 | |
(0.4900) | (77.6%) | (0.4175) | (77.3%) | (0.4891) | (75.5%) | |||
(, 8, 2) | 1.0452 | 0.9798 | 0.9985 | 1.0683 | 0.9623 | 1.0461 | ||
(0.4417) | (79.5%) | (0.5132) | (81.4%) | (0.4756) | (83.7%) | |||
(20, 30) | 30 | (, 20) | 1.0068 | 1.0603 | 1.0278 | 1.0255 | 1.0388 | 0.9640 |
(0.4847) | (75.5%) | (0.4776) | (85.3%) | (0.4477) | (79.2%) | |||
(, 15, 5) | 0.9781 | 1.0944 | 0.9458 | 1.0991 | 1.0212 | 1.1931 | ||
(0.4930) | (83.7%) | (0.5209) | (77.6%) | (0.6462) | (79.3%) | |||
40 | (, 10) | 0.9963 | 1.0729 | 1.0238 | 1.0067 | 1.0040 | 0.9967 | |
(0.5050) | (79.4%) | (0.4489) | (79.4%) | (0.4339) | (85.7%) | |||
(, 5, 5) | 0.9807 | 1.1703 | 1.0075 | 1.0950 | 1.0316 | 1.0621 | ||
(0.5575) | (79.5%) | (0.4910) | (81.6%) | (0.4717) | (83.5%) | |||
(30, 30) | 30 | (, 30) | 1.0107 | 1.0005 | 1.0055 | 1.0291 | 0.9876 | 1.0327 |
(0.4328) | (81.6%) | (0.4670) | (77.3%) | (0.4569) | (79.6%) | |||
(, 20, 10) | 0.9806 | 1.0525 | 1.0169 | 1.0173 | 1.0068 | 1.0439 | ||
(0.5004) | (79.2%) | (0.4542) | (83.5%) | (0.5093) | (82.4%) | |||
40 | (, 20) | 0.9948 | 0.9146 | 1.0206 | 0.9266 | 1.0067 | 1.0614 | |
(0.3782) | (85.5%) | (0.4180) | (81.2%) | (0.4759) | (83.5%) | |||
(, 20, 0) | 1.0030 | 1.0366 | 1.0168 | 1.0279 | 1.0014 | 1.0452 | ||
(0.4935) | (80.1%) | (0.4827) | (85.2%) | (0.4877) | (83.4%) | |||
(30, 40) | 40 | (, 30) | 0.985 | 1.098 | 1.026 | 0.990 | 1.019 | 1.019 |
(0.5126) | (79.6%) | (0.4305) | (71.4%) | (0.4581) | (69.4%) | |||
(, 29, 1) | 1.0223 | 1.0315 | 1.0313 | 0.9991 | 1.0161 | 1.0187 | ||
(0.4671) | (77.3%) | (0.4496) | (81.2%) | (0.4723) | (75.3%) | |||
50 | (, 20) | 0.9933 | 0.9981 | 0.9999 | 1.0085 | 1.0143 | 0.9847 | |
(0.4293) | (82.6%) | (0.4293) | (83.6%) | (0.4359) | (80.2%) | |||
(, 15, 5) | 0.9964 | 1.0625 | 1.0076 | 1.0580 | 0.9790 | 1.0990 | ||
(0.4780) | (71.4%) | (0.4708) | (79.6%) | (0.4960) | (73.5%) | |||
(40, 50) | 50 | (, 40) | 0.9993 | 0.9993 | 1.0055 | 1.0000 | 0.9928 | 1.0416 |
(0.4184) | (79.5%) | (0.4306) | (77.6%) | (0.4404) | (85.7%) | |||
(, 35, 5) | 0.9947 | 1.0350 | 0.9744 | 1.0048 | 0.9747 | 1.1015 | ||
(0.4617) | (79.6%) | (0.4355) | 86.4%) | (0.5212) | (78.4%) | |||
60 | (, 30) | 1.0000 | 1.0013 | 1.0016 | 0.9956 | 1.0090 | 1.0714 | |
(0.4469) | (85.3%) | (0.4297) | (79.5%) | (0.4790) | (83.5%) | |||
(, 25, 5) | 0.9860 | 1.0654 | 0.9819 | 1.1362 | 1.0007 | 1.0541 | ||
(0.4726) | (79.6%) | (0.5216) | (81.6%) | (0.4794) | (83.7%) |
r | SE | LINEX (a = −2) | LINEX (a = 2) | |||||
---|---|---|---|---|---|---|---|---|
ABE (MSE) | AL (CP) | ABE (MSE) | AL (CP) | ABE (MSE) | AL (CP) | |||
(20, 20) | 20 | (, 20) | 2.1369 | 1.1184 | 2.1172 | 1.0649 | 2.1362 | 1.0704 |
(0.5073) | (83.7%) | (0.5054) | (78.6%) | (0.5017) | (83.5%) | |||
(, 5, 15) | 2.2611 | 1.2195 | 2.2837 | 1.0999 | 2.2413 | 1.2725 | ||
(0.5829) | (87.8%) | (0.5677) | (85.7%) | (0.5045) | (95.9%) | |||
30 | (, 10) | 2.1079 | 1.1118 | 2.0560 | 1.0222 | 1.9763 | 1.0789 | |
(0.4709) | (87.8%) | (0.4957) | (83.5%) | (0.4851) | (85.5%) | |||
(, 8, 2) | 2.1212 | 1.1070 | 2.2686 | 1.0659 | 2.1452 | 1.0980 | ||
(0.4977) | (77.6%) | (0.4464) | (83.7%) | (0.4805) | (83.7%) | |||
(20, 30) | 30 | (, 20) | 1.9937 | 1.0379 | 2.0300 | 0.9538 | 2.1100 | 1.0113 |
(0.4733) | (83.5%) | (0.4905) | (80.1%) | (0.4708) | (79.6%) | |||
(, 15, 5) | 2.1332 | 1.1378 | 2.2554 | 1.0695 | 2.2903 | 1.1828 | ||
(0.4858) | (89.8%) | (0.4885) | (83.7%) | (0.5124) | (83.7%) | |||
40 | (, 10) | 1.9805 | 1.0449 | 1.9661 | 1.0533 | 2.0159 | 1.0594 | |
(0.4789) | (81.4%) | (0.4404) | (83.7%) | (0.4919) | (75.5%) | |||
(, 5, 5) | 2.1549 | 1.0898 | 2.2024 | 1.1304 | 2.2637 | 1.1337 | ||
(0.4618) | (83.7%) | (0.5000) | (83.7%) | (0.5218) | (81.6%) | |||
(30, 30) | 30 | (, 30) | 2.0202 | 1.1449 | 2.0038 | 1.0791 | 2.0269 | 1.0245 |
(0.5005) | (83.7%) | (0.4847) | (77.6%) | (0.4466) | (81.6%) | |||
(, 20, 10) | 2.2779 | 1.0953 | 2.1466 | 1.0463 | 2.1271 | 1.0983 | ||
(0.4688) | (79.6%) | (0.4722) | (80.3%) | (0.4939) | (79.6%) | |||
40 | (, 20) | 2.0315 | 1.0394 | 2.0478 | 1.0209 | 1.9222 | 1.0062 | |
(0.4481) | (83.7%) | (0.4735) | (79.4%) | (0.4616) | (85.6%) | |||
(, 20, 0) | 2.0522 | 1.0282 | 2.0611 | 1.0041 | 2.0038 | 1.0683 | ||
(0.4450) | (86.6%) | (0.4517) | (79.6%) | (0.4733) | (79.6%) | |||
(30, 40) | 40 | (, 30) | 2.1336 | 1.0689 | 2.0433 | 1.0620 | 2.0762 | 1.0605 |
(0.4662) | (77.6%) | (0.4636) | (81.6%) | (0.4551) | (85.7%) | |||
(, 29, 1) | 2.0341 | 0.9790 | 2.1279 | 1.0885 | 2.0263 | 1.0263 | ||
(0.4332) | (75.5%) | (0.4606) | (91.8%) | (0.4820) | (85.3%) | |||
50 | (, 20) | 2.0932 | 1.0310 | 1.9805 | 0.9660 | 2.0880 | 1.0606 | |
(0.4436) | (79.6%) | (0.4270) | (63.3%) | (0.4548) | (75.5%) | |||
(, 15, 5) | 2.1114 | 1.0367 | 2.0779 | 1.0468 | 2.1596 | 1.0724 | ||
(0.4478) | (73.5%) | (0.4443) | (87.8%) | (0.4442) | (89.8%) | |||
(40, 50) | 50 | (, 40) | 1.9494 | 0.9671 | 1.9803 | 0.9992 | 2.0339 | 1.0119 |
(0.4416) | (81.4%) | (0.4323) | (77.5%) | (0.4348) | (81.6%) | |||
(, 35, 5) | 2.0959 | 1.0594 | 2.0835 | 1.0281 | 2.2055 | 1.0858 | ||
(0.4488) | (83.7%) | (0.4599) | (81.4%) | (0.4593) | (81.6%) | |||
60 | (, 30) | 2.0526 | 0.9574 | 2.0140 | 1.0195 | 1.9820 | 0.9500 | |
(0.4237) | (79.5%) | (0.4510) | (81.4%) | (0.4167) | (85.3%) | |||
(, 25, 5) | 2.0987 | 1.0704 | 2.0992 | 1.0280 | 2.0760 | 0.9836 | ||
(0.4684) | (87.6%) | (0.4454) | (83.5%) | (0.4272) | (79.5%) |
r | SE | LINEX (a = −2) | LINEX (a = 2) | |||||
---|---|---|---|---|---|---|---|---|
ABE (MSE) | AL (CP) | ABE (MSE) | AL (CP) | ABE (MSE) | AL (CP) | |||
(20, 20) | 20 | (, 20) | 1.0156 | 1.0443 | 1.0320 | 1.1796 | 1.0249 | 1.1103 |
(0.5076) | (79.3%) | (0.6132) | (79.6%) | (0.6268) | (81.4%) | |||
(, 5, 15) | 0.9660 | 1.2940 | 1.0027 | 1.3100 | 0.9979 | 1.2091 | ||
(0.7323) | (79.6%) | (0.7311) | (83.7%) | (0.6159) | (81.4 | |||
30 | (, 10) | 1.0064 | 1.0180 | 0.9852 | 1.0247 | 0.9832 | 1.0145 | |
(0.4826) | (79.3%) | (0.4801) | (80.3%) | (0.4279) | (81.6%) | |||
(, 8, 2) | 0.9484 | 1.1744 | 0.9751 | 1.0691 | 0.9762 | 1.1375 | ||
(0.5875) | (83.4%) | (0.4949) | (81.6%) | (0.5884) | (82.5%) | |||
(20, 30) | 30 | (, 20) | 0.9960 | 1.0205 | 1.0545 | 0.9728 | 0.9643 | 1.0074 |
(0.4698) | (80.3%) | (0.4499) | (79.3%) | (0.4287) | (82.5%) | |||
(, 15, 5) | 1.0009 | 1.1950 | 1.0081 | 1.1463 | 0.9424 | 1.2428 | ||
(0.6132) | (79.6%) | (0.5497) | (75.5%) | (0.6540) | (85.7%) | |||
40 | (, 10) | 0.9990 | 1.0970 | 1.0058 | 1.0530 | 0.9919 | 1.0736 | |
(0.4729) | (83.7%) | (0.4792) | (81.6%) | (0.5184) | (89.4%) | |||
(, 5, 5) | 0.9667 | 1.1002 | 0.9694 | 1.1500 | 0.9487 | 1.2435 | ||
(0.5513) | (77.5%) | (0.5426) | (79.4%) | (0.6024) | (89.8%) | |||
(30, 30) | 30 | (, 30) | 1.0125 | 1.1329 | 0.9953 | 1.0773 | 1.0510 | 1.0657 |
(0.5555) | (80.3%) | (0.5020) | (81.4%) | (0.4924) | (85.3%) | |||
(, 20, 10) | 1.0012 | 1.1287 | 1.0190 | 1.0838 | 1.0283 | 1.1435 | ||
(0.5624) | (83.5%) | (0.5212) | (83.3%) | (0.5709) | (85.5%) | |||
40 | (, 20) | 1.0067 | 1.0527 | 0.9995 | 1.0600 | 1.0186 | 1.0202 | |
(0.4831) | (81.4%) | (0.5084) | (85.3%) | (0.4666) | (83.3%) | |||
(, 20, 0) | 0.9617 | 1.0318 | 0.9682 | 1.0478 | 1.0071 | 1.0864 | ||
(0.4498) | (80.6%) | (0.4720) | (79.4%) | (0.5181) | (79.5%) | |||
(30, 40) | 40 | (, 30) | 0.9770 | 1.0718 | 1.0035 | 1.0689 | 1.0279 | 1.0498 |
(0.5480) | (69.4%) | (0.4782) | (77.6%) | (0.5072) | (71.4%) | |||
(, 29, 1) | 1.0140 | 1.0168 | 0.9713 | 1.1256 | 0.9921 | 1.0243 | ||
(0.4600) | (80.3%) | (0.5242) | (85.7%) | (0.4839) | (81.2%) | |||
50 | (, 20) | 1.0204 | 1.0357 | 1.0045 | 1.0224 | 0.9779 | 1.0610 | |
(0.4712) | (85.5%) | (0.4547) | (83.5%) | (0.4787) | (89.4%) | |||
(, 15, 5) | 0.9783 | 1.0282 | 0.9942 | 1.1204 | 0.9883 | 1.0798 | ||
(0.4586) | (79.2%) | (0.5215) | (80.6%) | (0.4825) | (85.6%) | |||
(40, 50) | 50 | (, 40) | 1.0244 | 0.9667 | 1.0162 | 0.9796 | 0.9989 | 1.0231 |
(0.4103) | (79.4%) | (0.4253) | (82.4%) | (0.4731) | (82.3%) | |||
(, 35, 5) | 1.0069 | 1.0699 | 1.0181 | 1.0126 | 0.9549 | 1.1400 | ||
(0.5131) | (81.4%) | (0.4623) | (78.5%) | (0.5417) | (881.4%) | |||
60 | (, 30) | 0.9760 | 1.0166 | 1.0039 | 1.0264 | 0.9957 | 0.9585 | |
(0.4538) | (81.2%) | (0.4558) | (76.5%) | (0.4469) | (81.0%) | |||
(, 25, 5) | 0.9938 | 1.0719 | 0.9900 | 1.0500 | 0.9988 | 1.0178 | ||
(0.4795) | (79.6%) | (0.4908) | (77.6%) | (0.4484) | (82.5%) |
Parameters | AMLE | MSE | AL | |
---|---|---|---|---|
0.4303 | 0.1201 | 0.1410 | ||
0.4557 | 0.1330 | 0.1692 | ||
1.8739 | 0.0323 | 0.0282 | ||
0.3807 | 0.1057 | 0.0674 | ||
0.6013 | 0.0389 | 0.0654 | ||
1.8549 | 0.0302 | 0.0252 | ||
0.3614 | 0.1029 | 0.0977 | ||
0.6315 | 0.0385 | 0.1165 | ||
1.8434 | 0.0302 | 0.0532 |
Parameters | SE | LINEX (a = −2) | LINEX (a = 2) | ||||
---|---|---|---|---|---|---|---|
ABE | AL | ABE | AL | ABE | AL | ||
0.3583 | 1.4459 | 0.3740 | 1.4435 | 0.3704 | 1.4537 | ||
0.4593 | 1.4486 | 0.4450 | 1.4369 | 0.4479 | 1.4557 | ||
1.8047 | 1.4725 | 1.8080 | 1.4691 | 1.8068 | 1.4822 | ||
0.3454 | 1.4207 | 0.3426 | 1.4378 | 0.3446 | 1.4406 | ||
0.5427 | 1.4220 | 0.5458 | 1.4435 | 0.5456 | 1.4522 | ||
1.7788 | 1.4013 | 1.7828 | 1.4349 | 1.7774 | 1.4672 | ||
0.3357 | 1.4365 | 0.3352 | 1.4280 | 0.3315 | 1.4307 | ||
0.5615 | 1.4061 | 0.5643 | 1.4416 | 0.5656 | 1.4258 | ||
1.7727 | 1.4140 | 1.7705 | 1.4241 | 1.7733 | 1.4259 |
Parameters | SE | LINEX (a = −2) | LINEX (a = 2) | ||||
---|---|---|---|---|---|---|---|
ABE | AL | ABE | AL | ABE | AL | ||
0.3552 | 1.4329 | 0.3593 | 1.4559 | 0.3588 | 1.4208 | ||
0.3670 | 1.4563 | 0.3618 | 1.4725 | 0.3669 | 1.4119 | ||
1.8170 | 1.4699 | 1.8179 | 1.4617 | 1.8181 | 1.4513 | ||
0.3267 | 1.4206 | 0.3273 | 1.4313 | 0.3211 | 1.4573 | ||
0.5601 | 1.4617 | 0.5601 | 1.4343 | 0.5643 | 1.4491 | ||
1.7684 | 1.4706 | 1.7671 | 1.4723 | 1.7661 | 1.4453 | ||
0.3071 | 1.4249 | 0.3119 | 1.4415 | 0.3062 | 1.4312 | ||
0.5951 | 1.4528 | 0.5920 | 1.4109 | 0.5932 | 1.4449 | ||
1.7560 | 1.4423 | 1.7514 | 1.4251 | 1.7537 | 1.4490 |
Parameters | AMLE | MSE | AL | |
---|---|---|---|---|
0.9900 | 0.0206 | 0.0901 | ||
0.8269 | 0.0235 | 0.0456 | ||
0.2267 | 0.0926 | 0.0364 | ||
1.0212 | 0.0016 | 0.0321 | ||
0.8943 | 0.0017 | 0.0185 | ||
0.2011 | 0.0076 | 0.0032 | ||
1.0300 | 0.0157 | 0.0391 | ||
0.8820 | 0.0178 | 0.0218 | ||
0.2020 | 0.0758 | 0.0046 |
Parameters | SE | LINEX (a = −2) | LINEX (a = 2) | ||||
---|---|---|---|---|---|---|---|
ABE | AL | ABE | AL | ABE | AL | ||
0.9785 | 0.5554 | 0.9843 | 0.5435 | 0.9811 | 0.6022 | ||
0.8224 | 0.3200 | 0.8217 | 0.3233 | 0.8217 | 0.3236 | ||
0.2301 | 1.2663 | 0.2284 | 1.2292 | 0.2294 | 1.2336 | ||
0.9978 | 0.5047 | 0.9981 | 0.5820 | 0.9976 | 0.5234 | ||
0.8770 | 0.2483 | 0.8759 | 0.3219 | 0.8772 | 0.2867 | ||
0.2093 | 1.2158 | 0.2099 | 1.2429 | 0.2096 | 1.2140 | ||
1.0070 | 0.5455 | 1.0072 | 0.5462 | 1.0057 | 0.6085 | ||
0.8647 | 0.2887 | 0.8643 | 0.3071 | 0.8674 | 0.2868 | ||
0.2103 | 1.2218 | 0.2102 | 1.2214 | 0.2101 | 1.2162 |
Parameters | SE | LINEX (a = −2) | LINEX (a = 2) | ||||
---|---|---|---|---|---|---|---|
ABE | AL | ABE | AL | ABE | AL | ||
0.9601 | 0.5763 | 0.9604 | 0.6113 | 0.9554 | 0.5686 | ||
0.8019 | 0.2969 | 0.8002 | 0.3879 | 0.8003 | 0.3585 | ||
0.2443 | 1.2265 | 0.2447 | 1.2309 | 0.2463 | 1.2479 | ||
0.9991 | 0.5726 | 1.0008 | 0.5406 | 1.0012 | 0.5898 | ||
0.8743 | 0.3209 | 0.8755 | 0.2863 | 0.8744 | 0.3129 | ||
0.2120 | 1.2390 | 0.2109 | 1.2166 | 0.2114 | 1.2064 | ||
1.0066 | 0.5894 | 1.0108 | 0.6059 | 1.0100 | 0.5671 | ||
0.8626 | 0.3331 | 0.8610 | 0.3510 | 0.8635 | 0.2783 | ||
0.2129 | 1.2100 | 0.2123 | 1.2099 | 0.2119 | 1.2343 |
References
- Kumar, S.; Kumari, A.; Kumar, K. Bayesian and Classical Inferences in Two Inverse Chen Populations Based on Joint Type-II Censoring. Am. J. Theor. Appl. Stat. 2022, 11, 150–159. [Google Scholar]
- Balakrishnan, N.; Rasouli, A. Exact likelihood inference for two exponential populations under joint Type-II censoring. Comput. Stat. Data Anal. 2008, 52, 2725–2738. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Burkschat, M.; Cramer, E.; Hofmann, G. Fisher information based progressive censoring plans. Comput. Stat. Data Anal. 2008, 53, 366–380. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Cramer, E. The Art of Progressive Censoring: Applications to Reliability and Quality; Statistics for Industry and Technology; Springer: New York, NY, USA, 2014. [Google Scholar]
- Rasouli, A.; Balakrishnan, N. Exact likelihood inference for two exponential populations under joint progressive type-II censoring. Commun. Stat. Methods 2010, 39, 2172–2191. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Su, F.; Liu, K.Y. Exact likelihood inference for k exponential populations under joint progressive type-II censoring. Commun. Stat.-Simul. Comput. 2015, 44, 902–923. [Google Scholar] [CrossRef]
- Doostparast, M.; Ahmadi, M.V.; Ahmadi, J. Bayes estimation based on joint progressive type II censored data under LINEX loss function. Commun. Stat.-Simul. Comput. 2013, 42, 1865–1886. [Google Scholar] [CrossRef]
- Mondal, S.; Kundu, D. Point and interval estimation of Weibull parameters based on joint progressively censored data. Sankhya B 2019, 81, 1–25. [Google Scholar] [CrossRef]
- Goel, R.; Krishna, H. Likelihood and Bayesian inference for k Lindley populations under joint type-II censoring scheme. Commun. Stat.-Simul. Comput. 2023, 52, 3475–3490. [Google Scholar] [CrossRef]
- Krishna, H.; Goel, R. Inferences for two Lindley populations based on joint progressive type-II censored data. Commun. Stat.-Simul. Comput. 2022, 51, 4919–4936. [Google Scholar] [CrossRef]
- Hassan, A.S.; Elsherpieny, E.; Aghel, W.E. Statistical inference of the Burr Type III distribution under joint progressively Type-II censoring. Sci. Afr. 2023, 21, e01770. [Google Scholar] [CrossRef]
- Kumar, K.; Kumari, A. Bayesian and likelihood estimation in two inverse Pareto populations under joint progressive censoring. J. Indian Soc. Probab. Stat. 2023, 24, 283–310. [Google Scholar] [CrossRef]
- Hasaballah, M.M.; Tashkandy, Y.A.; Balogun, O.S.; Bakr, M. Reliability analysis for two populations Nadarajah-Haghighi distribution under Joint progressive type-II censoring. AIMS Math. 2024, 9, 10333–10352. [Google Scholar] [CrossRef]
- Abo-Kasem, O.; Almetwally, E.M.; Abu El Azm, W.S. Reliability analysis of two Gompertz populations under joint progressive type-II censoring scheme based on binomial removal. Int. J. Model. Simul. 2024, 44, 290–310. [Google Scholar] [CrossRef]
- Keller, A.Z.; Kamath, A.R.R. Alternate Reliability Models for Mechanical Systems. In Proceedings of the 3rd International Conference on Reliability and Maintainability (Fiabilité et Maintenabilité), Toulouse, France, 18–21 October 1982; pp. 411–415. [Google Scholar]
- Langlands, A.O.; Pocock, S.J.; Kerr, G.R.; Gore, S.M. Long-term survival of patients with breast cancer: A study of the curability of the disease. Br. Med. J. 1979, 2, 1247–1251. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, A.; Chatterjee, A. Use of the Fréchet distribution for UPV measurements in concrete. NDT E Int. 2012, 52, 122–128. [Google Scholar] [CrossRef]
- Chiodo, E.; Falco, P.D.; Noia, L.P.D.; Mottola, F. Inverse Log-logistic distribution for Extreme Wind Speed modeling: Genesis, identification and Bayes estimation. AIMS Energy 2018, 6, 926–948. [Google Scholar] [CrossRef]
- El Azm, W.A.; Aldallal, R.; Aljohani, H.M.; Nassr, S.G. Estimations of competing lifetime data from inverse Weibull distribution under adaptive progressively hybrid censored. Math. Biosci. Eng 2022, 19, 6252–6276. [Google Scholar] [CrossRef]
- Bi, Q.; Gui, W. Bayesian and classical estimation of stress-strength reliability for inverse Weibull lifetime models. Algorithms 2017, 10, 71. [Google Scholar] [CrossRef]
- Alslman, M.; Helu, A. Estimation of the stress-strength reliability for the inverse Weibull distribution under adaptive type-II progressive hybrid censoring. PLoS ONE 2022, 17, e0277514. [Google Scholar] [CrossRef]
- Shawky, A.I.; Khan, K. Reliability estimation in multicomponent stress-strength based on inverse Weibull distribution. Processes 2022, 10, 226. [Google Scholar] [CrossRef]
- Ren, H.; Hu, X. Estimation for inverse Weibull distribution under progressive type-II censoring scheme. AIMS Math. 2023, 8, 22808–22829. [Google Scholar] [CrossRef]
- Kumar, K.; Kumar, I. Estimation in inverse Weibull distribution based on randomly censored data. Statistica 2019, 79, 47–74. [Google Scholar]
- Hall, P. Theoretical comparison of bootstrap confidence intervals. Ann. Stat. 1988, 16, 927–953. [Google Scholar] [CrossRef]
- Efron, B. The Jackknife, the Bootstrap and Other Resampling Plans; SIAM: Philadelphia, PA, USA, 1982. [Google Scholar]
- El-Saeed, A.R.; Almetwally, E.M. On Algorithms and Approximations for Progressively Type-I Censoring Schemes. Stat. Anal. Data Mining: ASA Data Sci. J. 2024, 17, e11717. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Iliopoulos, G. Stochastic monotonicity of the MLE of exponential mean under different censoring schemes. Ann. Inst. Stat. Math. 2009, 61, 753–772. [Google Scholar] [CrossRef]
- Ding, L.; Gui, W. Statistical inference of two gamma distributions under the joint type-II censoring scheme. Mathematics 2023, 11, 2003. [Google Scholar] [CrossRef]
- Xia, Z.; Yu, J.; Cheng, L.; Liu, L.; Wang, W. Study on the breaking strength of jute fibres using modified Weibull distribution. Compos. Part A Appl. Sci. Manuf. 2009, 40, 54–59. [Google Scholar] [CrossRef]
r | AMLE (MSE) | ACI | Boot-T AL | Boot-P AL | |||
---|---|---|---|---|---|---|---|
AL | CP | ||||||
(20, 20) | 20 | (, 20) | 1.7027 (0.2309) | 1.8360 | 89.5% | 1.6794 | 1.7570 |
(, 5, 15) | 1.6513 (0.2244) | 1.9249 | 91.3% | 1.7832 | 1.8529 | ||
30 | (, 10) | 1.5925 (0.1195) | 1.3507 | 91.5% | 1.2941 | 1.2804 | |
(, 8, 2) | 1.6006 (0.1229) | 1.3543 | 91.0% | 1.2795 | 1.2911 | ||
(20, 30) | 30 | (, 20) | 1.6548 (0.1670) | 1.5465 | 88.7% | 1.4923 | 1.5469 |
(, 15, 5) | 1.6215 (0.1108) | 1.5157 | 89.6% | 1.4284 | 1.4801 | ||
40 | (, 10) | 1.6134 (0.1226) | 1.3501 | 90.0% | 1.2320 | 1.3142 | |
(, 5, 5) | 1.4942 (0.0833) | 1.1618 | 95.1% | 1.0834 | 1.0957 | ||
(30, 30) | 30 | (, 30) | 1.6257 (0.1253) | 1.3572 | 91.5% | 1.3277 | 1.3003 |
(, 20, 10) | 1.6046 (0.1264) | 1.3640 | 91.7% | 1.2984 | 1.3362 | ||
40 | (, 20) | 1.5939 (0.0875) | 1.1235 | 90.9% | 1.0475 | 1.0692 | |
(, 20, 0) | 1.6226 (0.0906) | 1.1407 | 89.2% | 1.1087 | 1.1204 | ||
(30, 40) | 40 | (, 30) | 1.5855 (0.1014) | 1.2148 | 91.0% | 1.1601 | 1.2213 |
(, 29, 1) | 1.6173 (0.1118) | 1.2625 | 89.3% | 0.8930 | 1.1819 | ||
50 | (, 20) | 1.5765 (0.0799) | 1.0914 | 92.2% | 1.0603 | 1.0860 | |
(, 15, 5) | 1.5528 (0.0687) | 1.0263 | 91.6% | 0.9160 | 1.0000 | ||
(40, 50) | 50 | (, 40) | 1.5595 (0.0754) | 1.0515 | 92.6% | 0.9260 | 1.0616 |
(, 35, 5) | 1.5817 (0.0728) | 1.0436 | 92.7% | 0.9270 | 1.0140 | ||
60 | (, 30) | 1.5739 (0.0574) | 0.9250 | 92.6% | 0.9260 | 0.8984 | |
(, 25, 5) | 1.5406 (0.0560) | 0.9298 | 92.6% | 0.9210 | 0.9249 |
r | AMLE (MSE) | ACI | Boot-T AL | Boot-P AL | |||
---|---|---|---|---|---|---|---|
AL | CP | ||||||
(20, 20) | 20 | (, 20) | 2.2568 (0.4263) | 2.5265 | 89.1% | 2.3058 | 2.3371 |
(, 5, 15) | 2.4729 (0.6462) | 2.7021 | 84.6% | 2.5468 | 2.5304 | ||
30 | (, 10) | 2.1285 (0.1726) | 1.6131 | 92.2% | 1.5926 | 1.5996 | |
(, 2, 8) | 2.2105 (0.2826) | 1.9205 | 88.0% | 1.8180 | 1.7945 | ||
(20, 30) | 30 | (, 20) | 2.1136 (0.1569) | 1.4982 | 90.2% | 1.4357 | 1.4124 |
(, 15, 5) | 2.2705 (0.2505) | 1.7822 | 87.9% | 1.7199 | 1.6676 | ||
40 | (, 10) | 2.1024 (0.1122) | 1.2843 | 92.0% | 1.2783 | 1.2660 | |
(, 5, 5) | 2.2802 (0.2066) | 1.4900 | 85.5% | 1.4619 | 1.4794 | ||
(30, 30) | 30 | (, 30) | 2.1330 (0.2243) | 1.7878 | 90.3% | 1.7324 | 1.7611 |
(, 20, 10) | 2.2581 (0.2875) | 1.9045 | 87.5% | 1.7720 | 1.7790 | ||
30 | (, 20) | 2.1206 (0.1340) | 1.4057 | 91.8% | 1.3682 | 1.3687 | |
(, 20, 0) | 2.1560 (0.1590) | 1.4870 | 90.1% | 1.4397 | 1.4210 | ||
(30, 40) | 40 | (, 30) | 2.0866 (0.1098) | 1.2793 | 91.6% | 1.2428 | 1.2512 |
(, 29, 1) | 2.1423 (0.1422) | 1.3821 | 89.9% | 0.8990 | 1.3511 | ||
50 | (, 20) | 2.0665 (0.0871) | 1.1578 | 93.1% | 1.1595 | 1.1305 | |
(, 15, 5) | 2.15499 (0.1136) | 1.2051 | 89.2% | 0.8920 | 1.0000 | ||
(40, 50) | 50 | (, 40) | 2.0872 (0.0907) | 1.1492 | 91.0% | 0.9200 | 1.1308 |
(, 35, 5) | 2.1518 (0.1080) | 1.1880 | 89.4% | 0.8940 | 1.1418 | ||
60 | (, 30) | 2.0577 (0.0775) | 1.0732 | 92.4% | 0.9240 | 1.0263 | |
(, 25, 5) | 2.1192 (0.0891) | 1.1012 | 91.7% | 0.9170 | 1.0738 |
r | AMLE (MSE) | ACI | Boot-T AL | Boot-P AL | |||
---|---|---|---|---|---|---|---|
AL | CP | ||||||
(20, 20) | 20 | (, 20) | 1.0003 (0.0405) | 0.8130 | 94.9% | 0.8097 | 0.7918 |
(, 5, 15) | 0.9954 (0.0285) | 0.6739 | 94.8% | 0.6571 | 0.6537 | ||
30 | (, 10) | 1.0326 (0.0343) | 0.7336 | 93.0% | 0.9300 | 0.7270 | |
(, 8, 2) | 1.0057 (0.0320) | 0.7173 | 93.9% | 0.6808 | 0.6771 | ||
(20, 30) | 30 | (, 20) | 1.0055 (0.0286) | 0.6764 | 94.2% | 0.6700 | 0.6645 |
(, 15, 5) | 0.9954 (0.0285) | 0.6739 | 94.8% | 0.6571 | 0.6537 | ||
40 | (, 10) | 1.0079 (0.0258) | 0.6397 | 94.2% | 0.6302 | 0.6323 | |
(, 5, 5) | 0.9949 (0.0257) | 0.6405 | 94.7% | 0.9470 | 0.6159 | ||
(30, 30) | 30 | (, 30) | 0.9927 (0.0255) | 0.6369 | 95.8% | 0.6194 | 0.6155 |
(, 20, 10) | 0.9822 (0.0260) | 0.6411 | 96.1% | 0.6403 | 0.6233 | ||
40 | (, 20) | 1.0116 (0.0220) | 0.5902 | 95.0% | 0.5793 | 0.5667 | |
(, 20, 0) | 0.9980 (0.0245) | 0.6248 | 95.2% | 0.9520 | 0.5974 | ||
(30, 40) | 40 | (, 30) | 0.9964 (0.0191) | 0.5479 | 94.3% | 0.9430 | 0.5538 |
(, 29, 1) | 0.9920 (0.0194) | 0.5499 | 95.9% | 0.9590 | 0.5399 | ||
50 | (, 20) | 1.0113 (0.0179) | 0.5275 | 93.5% | 0.9350 | 0.5115 | |
(, 15, 5) | 1.0038 (0.0187) | 0.5436 | 94.8% | 0.9480 | 0.5438 | ||
(40, 50) | 50 | (, 40) | 1.0088 (0.0158) | 0.4966 | 94.7% | 0.9470 | 0.5138 |
(, 35, 5) | 0.9917 (0.0156) | 0.4948 | 95.4% | 0.9540 | 0.4892 | ||
60 | (, 30) | 1.0033 (0.0137) | 0.4624 | 94.9% | 0.9490 | 0.4751 | |
(, 25, 5) | 1.0028 (0.0139) | 0.4661 | 94.8% | 0.9510 | 0.4648 |
r | SE | LINEX (a = −2) | LINEX (a = 2) | |||||
---|---|---|---|---|---|---|---|---|
ABE (MSE) | AL (CP) | ABE (MSE) | AL (CP) | ABE (MSE) | AL (CP) | |||
(20, 20) | 20 | (, 20) | 1.5540 | 1.0856 | 1.4627 | 1.0122 | 1.4212 | 1.0443 |
(0.2319) | (98.0%) | (0.1806) | (100.0%) | (0.2106) | (100.0%) | |||
(, 5, 15) | 1.4282 | 1.0479 | 1.4477 | 1.0722 | 1.4686 | 1.0198 | ||
(0.1956) | (100.0%) | (0.2308) | (100.0%) | (0.1920) | (100.0%) | |||
30 | (, 10) | 1.4721 | 1.0263 | 1.4489 | 0.9893 | 1.5236 | 1.0107 | |
(0.1914) | (100.0%) | (0.1853) | (95.9%) | (0.1835) | (100.0%) | |||
(, 8, 2) | 1.4773 | 0.9943 | 1.4517 | 1.0549 | 1.4624 | 1.0138 | ||
(0.1852) | (100.0%) | (0.2119) | (100.0%) | (0.1923) | (97.96%) | |||
(20, 30) | 30 | (, 20) | 1.4851 | 0.9736 | 1.4665 | 0.9690 | 1.4283 | 0.9938 |
(0.1693) | (100.0%) | (0.1710) | (97.96%) | (0.1840) | (100.0%) | |||
(, 15, 5) | 1.4734 | 1.0072 | 1.4091 | 0.9971 | 1.4508 | 0.9837 | ||
(0.1755) | (100.0%) | (0.1994) | (100.0%) | (0.1726) | (100.0%) | |||
40 | (, 10) | 1.5437 | 0.9858 | 1.5155 | 1.0384 | 1.4327 | 1.0452 | |
(0.1704) | (100.0%) | (0.2019) | (100.0%) | (0.2023) | (100.0%) | |||
(, 5, 5) | 1.4175 | 1.04799 | 1.4096 | 0.9987 | 1.4462 | 1.0027 | ||
(0.1946) | (100.0%) | (0.1742) | (100.0%) | (0.1820) | (100.0%) | |||
(30, 30) | 30 | (, 30) | 1.4717 | 0.9640 | 1.4930 | 0.9761 | 1.4912 | 0.9608 |
(0.1699) | (97.96%) | (0.1731) | (97.96%) | (0.1736) | (97.96%) | |||
(, 20, 10) | 1.5002 | 0.9997 | 1.5325 | 1.0172 | 1.4544 | 1.0484 | ||
(0.1766) | (100.0%) | (0.1886) | (100.0%) | (0.2044) | (100.0%) | |||
40 | (, 20) | 1.4782 | 0.9419 | 1.4653 | 1.0049 | 1.4987 | 1.0303 | |
(0.1609) | (98.0%) | (0.1841) | (98.0%) | (0.1935) | (100.0%) | |||
(, 20, 0) | 1.4769 | 1.0073 | 1.4924 | 1.0412 | 1.5021 | 1.0273 | ||
(0.1797) | (100.0%) | (0.2009) | (100.0%) | (0.1902) | (100.0%) | |||
(30, 40) | 40 | (, 30) | 1.487 | 1.039 | 1.452 | 0.942 | 1.496 | 1.019 |
(0.1902) | (100.0%) | (0.1586) | (98.0%) | (0.1857) | (100.0%) | |||
(, 29, 1) | 1.4913 | 0.9877 | 1.4369 | 1.0116 | 1.5307 | 1.0151 | ||
(0.1748) | (100.0%) | (0.1784) | (100.0%) | (0.1825) | (100.0%) | |||
50 | (, 20) | 1.4993 | 0.9816 | 1.4748 | 1.0207 | 1.4509 | 1.0532 | |
(0.1740) | (100.0%) | (0.1860) | (100.0%) | (0.2010) | (100.0%) | |||
(, 15, 5) | 1.4526 | 1.0467 | 1.4565 | 1.0428 | 1.4391 | 1.0215 | ||
(0.1966) | (100.0%) | (0.1974) | (100.0%) | (0.1903) | (100.0%) | |||
(40, 50) | 50 | (, 40) | 1.4862 | 1.0449 | 1.4922 | 1.0040 | 1.5055 | 1.0486 |
(0.1940) | (100.0%) | (0.1771) | (100.0%) | (0.2009) | (100.0%) | |||
(, 35, 5) | 1.5231 | 1.0125 | 1.4924 | 0.9742 | 1.4771 | 1.0412 | ||
(0.1779) | (100.0%) | (0.1720) | (100.0%) | (0.1994) | (100.0%) | |||
60 | (, 30) | 1.4926 | 1.0105 | 1.4820 | 0.9905 | 1.4994 | 1.0187 | |
(0.1826) | (100.0%) | (0.1685) | (100.0%) | (0.1794) | (100.0%) | |||
(, 25, 5) | 1.4740 | 1.0425 | 1.5041 | 1.0200 | 1.4719 | 1.0245 | ||
(0.1929) | (100.0%) | (0.1828) | (100.0%) | (0.1831) | (100.0%) |
r | SE | LINEX (a = −2) | LINEX (a = 2) | |||||
---|---|---|---|---|---|---|---|---|
ABE (MSE) | AL (CP) | ABE (MSE) | AL (CP) | ABE (MSE) | AL (CP) | |||
(20, 20) | 20 | (, 20) | 1.5415 | 0.9974 | 1.5202 | 1.1238 | 1.5560 | 1.0223 |
(0.1891) | (98.0%) | (0.2478) | (100.0%) | (0.2064) | (95.9%) | |||
(, 5, 15) | 1.3973 | 1.1096 | 1.4134 | 1.0052 | 1.4864 | 1.1652 | ||
(0.2565) | (100.0%) | (0.1947) | (95.9%) | (0.2797) | (100.0%) | |||
30 | (, 10) | 1.5459 | 1.0182 | 1.5821 | 1.0241 | 1.5657 | 1.0313 | |
(0.2048) | (98.0%) | (0.1954) | (100.0%) | (0.1936) | (100.0%) | |||
(, 8, 2) | 1.5342 | 1.0839 | 1.4975 | 1.0356 | 1.5406 | 1.0968 | ||
(0.2248) | (98.0%) | (0.1963) | (98.0%) | (0.2452) | (100.0%) | |||
(20, 30) | 30 | (, 20) | 1.5068 | 1.0485 | 1.4969 | 0.9977 | 1.5988 | 1.0299 |
(0.2120) | (100.0%) | (0.1945) | (98.0%) | (0.1946) | (100.0%) | |||
(, 15, 5) | 1.5275 | 1.1028 | 1.4590 | 1.0865 | 1.5836 | 1.0912 | ||
(0.2460) | (100.0%) | (0.2205) | (100.0%) | (0.2500) | (98.0%) | |||
40 | (, 10) | 1.5544 | 1.0465 | 1.5168 | 1.0104 | 1.4995 | 1.0326 | |
(0.1981) | (100.0%) | (0.1808) | (100.0%) | (0.1987) | (98.0%) | |||
(, 5, 5) | 1.4592 | 0.9943 | 1.4368 | 1.0164 | 1.4163 | 1.1130 | ||
(0.1860) | (98.0%) | (0.1974) | (98.0%) | (0.2435) | (100.0%) | |||
(30, 30) | 30 | (, 30) | 1.5452 | 1.0391 | 1.5198 | 1.0611 | 1.6159 | 0.9741 |
(0.2185) | (98.0%) | (0.2299) | (95.9%) | (0.1652) | (100.0%) | |||
(, 20, 10) | 1.5250 | 1.0462 | 1.4700 | 1.0006 | 1.4882 | 1.0511 | ||
(0.2010) | (100.0%) | (0.1809) | (100.0%) | (0.2093) | (100.0%) | |||
40 | (, 20) | 1.5112 | 1.0565 | 1.4932 | 1.0288 | 1.4970 | 1.0090 | |
(0.2065) | (100.0%) | (0.2073) | (98.0%) | (0.1920) | (95.9%) | |||
(, 20, 0) | 1.5510 | 1.0584 | 1.5105 | 1.0100 | 1.5340 | 1.0369 | ||
(0.2045) | (100.0%) | (0.1877) | (100.0%) | (0.2034) | (100.0%) | |||
(30, 40) | 40 | (, 30) | 1.6226 | 1.0623 | 1.4931 | 1.0384 | 1.5335 | 1.0430 |
(0.2186) | (98.0%) | (0.1990) | (100.0%) | (0.1993) | (100.0%) | |||
(, 29, 1) | 1.5016 | 0.9801 | 1.4981 | 1.0258 | 1.5474 | 1.0125 | ||
(0.1733) | (100.0%) | (0.1882) | (100.0%) | (0.1988) | (98.0%) | |||
50 | (, 20) | 1.5536 | 1.0146 | 1.4953 | 0.9792 | 1.5270 | 1.0628 | |
(0.1907) | (100.0%) | (0.1738) | (100.0%) | (0.2026) | (100.0%) | |||
(, 15, 5) | 1.5256 | 1.0128 | 1.4978 | 0.9998 | 1.4926 | 1.0616 | ||
(0.1907) | (98.0%) | (0.1738) | (98.0%) | (0.2008) | (100.0%) | |||
(40, 50) | 50 | (, 40) | 1.4773 | 0.9553 | 1.5163 | 0.9957 | 1.4868 | 1.0291 |
(0.1596) | (100.0%) | (0.1797) | (100.0%) | (0.1919) | (100.0%) | |||
(, 35, 5) | 1.5283 | 1.0298 | 1.5067 | 1.0215 | 1.5188 | 1.0704 | ||
(0.1918) | (100.0%) | (0.1924) | (100.0%) | (0.2128) | (100.0%) | |||
60 | (, 30) | 1.5016 | 0.9801 | 1.4780 | 1.0114 | 1.4594 | 0.9964 | |
(0.1678) | (100.0%) | (0.1822) | (100.0%) | (0.1738) | (100.0%) | |||
(, 25, 5) | 1.4615 | 1.0400 | 1.5245 | 1.0407 | 1.5225 | 0.9925 | ||
(0.1914) | (100.0%) | (0.1957) | (100.0%) | (0.1707) | (100.0%) |
Datasets | Breakdown Times | ||||
---|---|---|---|---|---|
Breakdown at 32 kV | 0.27 | 0.40 | 0.69 | 0.79 | 2.75 |
3.91 | 9.88 | 13.95 | 15.93 | 27.80 | |
53.24 | 82.85 | 89.29 | 100.60 | 215.10 | |
Breakdown at 34 kV | 0.19 | 0.78 | 0.96 | 1.31 | 2.78 |
3.16 | 4.15 | 4.67 | 4.85 | 6.50 | |
7.35 | 8.01 | 8.27 | 12.06 | 31.75 | |
32.53 | 33.91 | 36.71 | 72.89 |
Datasets | Fiber Strength | |||||
---|---|---|---|---|---|---|
10 mm | 43.93 | 50.16 | 101.15 | 108.94 | 123.06 | 141.38 |
151.48 | 163.40 | 177.25 | 183.16 | 212.13 | 257.44 | |
262.90 | 291.27 | 303.90 | 323.83 | 353.24 | 376.42 | |
383.43 | 422.11 | 506.60 | 530.55 | 590.48 | 637.66 | |
671.49 | 693.73 | 700.74 | 704.66 | 727.23 | 778.17 | |
20 mm | 36.75 | 45.58 | 48.01 | 71.46 | 83.55 | 99.72 |
113.85 | 116.99 | 119.86 | 145.96 | 166.49 | 187.13 | |
187.85 | 200.16 | 244.53 | 284.64 | 350.70 | 375.81 | |
419.02 | 456.60 | 547.44 | 578.62 | 581.60 | 585.57 | |
594.29 | 662.66 | 688.16 | 707.36 | 756.70 | 765.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, J.; Wang, Y.; Gui, W. Statistical Inference of Inverse Weibull Distribution Under Joint Progressive Censoring Scheme. Symmetry 2025, 17, 829. https://doi.org/10.3390/sym17060829
Xiang J, Wang Y, Gui W. Statistical Inference of Inverse Weibull Distribution Under Joint Progressive Censoring Scheme. Symmetry. 2025; 17(6):829. https://doi.org/10.3390/sym17060829
Chicago/Turabian StyleXiang, Jinchen, Yuanqi Wang, and Wenhao Gui. 2025. "Statistical Inference of Inverse Weibull Distribution Under Joint Progressive Censoring Scheme" Symmetry 17, no. 6: 829. https://doi.org/10.3390/sym17060829
APA StyleXiang, J., Wang, Y., & Gui, W. (2025). Statistical Inference of Inverse Weibull Distribution Under Joint Progressive Censoring Scheme. Symmetry, 17(6), 829. https://doi.org/10.3390/sym17060829