Fine-Tuning of Aspects of Chirality by Co-Authorship Networks
Abstract
:1. Introduction
- (a)
- (b)
- (c)
- (d)
- The physical description of molecular size objects needs a refined mathematical apparatus. The mathematical principles/formulae may have a logical behavior, which is very similar to the above description of symmetry/asymmetry. The symmetry/asymmetry of these mathematical formulae has a very important influence on the “technical” handling (either by deductions or by computer-aided calculations) of these formulae, e.g., Refs. [10,11,12].
2. Basic Graph Theoretical Concepts
3. The Co-Authorship Network of Paul G. Mezey’s Chirality-Related Papers
4. Keyword Network Analysis of the M-Papers
5. The Network of Citing Papers
6. The Largest Communities in the Network of Citing Papers
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barron, L.D. Symmetry and Molecular Chirality. Chem. Soc. Rev. 1986, 15, 189–223. [Google Scholar] [CrossRef]
- Mezey, P.G. New Developments in Molecular Chirality; Springer: Dordrecht, The Netherlands, 1991; pp. 257–289. [Google Scholar] [CrossRef]
- Kishine, J.-I.; Kusunose, H.; Yamamoto, H.M. On the Definition of Chirality and Enantioselective Fields. Isr. J. Chem. 2022, 62, e202200049. [Google Scholar] [CrossRef]
- Mislow, K.; Siegel, J. Stereoisomerism and Local Chirality. J. Am. Chem. Soc. 1984, 106, 3319–3328. [Google Scholar] [CrossRef]
- Mondal, A.; Toyoda, R.; Costil, R.; Feringa, B.L. Chemically Driven Rotatory Molecular Machines. Angew. Chem. Int. Ed. 2022, 61, e202206631. [Google Scholar] [CrossRef]
- Gilat, G. Chiral Coefficient—A Measure of the Amount of Structural Chirality. J. Phys. A Math. Gen. 1989, 22, L545–L550. [Google Scholar] [CrossRef]
- Buda, A.B.; Mislow, K. On Geometric Measures of Chirality. J. Mol. Struct. Theochem. 1991, 232, 1–12. [Google Scholar] [CrossRef]
- Cliffe, M.J.; Goodwin, A.L. Quantification of Local Geometry and Local Symmetry in Models of Disordered Materials. Phys. Status Solidi B 2012, 250, 949–956. [Google Scholar] [CrossRef]
- Mezey, P.G. The Degree of Similarity of Three-Dimensional Bodies: Application to Molecular Shape Analysis. J. Math. Chem. 1991, 7, 39–49. [Google Scholar] [CrossRef]
- Mezey, P.G. The Holographic Electron Density Theorem and Quantum Similarity Measures. Mol. Phys. 1999, 96, 169–178. [Google Scholar] [CrossRef]
- Mezey, P.G. Generalized Chirality and Symmetry Deficiency. J. Math. Chem. 1998, 23, 65–84. [Google Scholar] [CrossRef]
- Scherbela, M.; Gerard, L.; Grohs, P. Towards Transferable Fermionic Neural Wavefunctions for Molecules. Nat. Commun. 2024, 15, 120. [Google Scholar] [CrossRef] [PubMed]
- Pályi, G.; Alberts, K.; Bartik, T.; Boese, R.; Fráter, G.; Herbrich, T.; Herfurth, A.; Kriebel, C.; Sorkau, A.; Tschoerner, M.C.; et al. Intramolecular Transmission of Chiral Information: Conformational Enantiomers in Crystalline Organocobalt Complexes Generated by Self-Organization. Organometallics 1996, 15, 3253–3255. [Google Scholar] [CrossRef]
- Matsumoto, A.; Fujiwara, S.; Abe, T.; Hara, A.; Tobita, T.; Sasagawa, T.; Kawasaki, T.; Soai, K. Elucidation of the Structures of Asymmetric Autocatalyst Based on X-Ray Crystallography. Bull. Chem. Soc. Jpn. 2016, 89, 1170–1177. [Google Scholar] [CrossRef]
- Soai, K.; Matsumoto, A.; Kawasaki, T. Asymmetric Autocatalysis as a Link Between Crystal Chirality and Highly Enantioenriched Organic Compounds. Isr. J. Chem. 2021, 61, 507–516. [Google Scholar] [CrossRef]
- Soai, K.; Kawasaki, T.; Matsumoto, A. Asymmetric Autocatalysis of Pyrimidyl Alkanol and Related Compounds. Self-replication, Amplification of Chirality and Implication for the Origin of Biological Enantioenriched Chirality. Tetrahedron 2018, 74, 1973–1990. [Google Scholar] [CrossRef]
- Soai, K.; Shibata, T.; Sato, I. Discovery and Development of Asymmetric Autocatalysis. Bull. Chem. Soc. Jpn. 2004, 77, 1063–1073. [Google Scholar] [CrossRef]
- Soai, K. The Soai Reaction and Its Implications with the Life’s Characteristic Features of Self-Replication and Homochirality. Tetrahedron 2022, 124, 133017. [Google Scholar] [CrossRef]
- Soai, K. Asymmetric Autocatalysis. Chiral Symmetry Breaking and the Origins of Homochirality of Organic Molecules. Proc. Jpn. Acad. Ser. B 2019, 95, 89–110. [Google Scholar] [CrossRef]
- Soai, K.; Kawasaki, T.; Matsumoto, A. Asymmetric Autocatalysis of Pyrimidyl Alkanol and Its Application to the Study on the Origin of Homochirality. Acc. Chem. Res. 2014, 47, 3643–3654. [Google Scholar] [CrossRef]
- Barabás, B.; Zucchi, C.; Maioli, M.; Micskei, K.; Pályi, G. Stochastic and Empirical Models of the Absolute Asymmetric Synthesis by the Soai-Autocatalysis. J. Mol. Model. 2015, 21, 33. [Google Scholar] [CrossRef]
- Pályi, G. Biological Chirality; Academic Press: Oxford, UK, 2020; pp. 1–257. [Google Scholar] [CrossRef]
- Barabási, A.L.; Jeong, H.; Néda, Z.; Ravasz, E.; Schubert, A.; Vicsek, T. Evolution of the Social Network of Scientific Collaborations. Phys. A Stat. Mech. Its Appl. 2002, 311, 590–614. [Google Scholar] [CrossRef]
- Fülöp, O.; Barabás, B. Impact of the Soai-Autocatalysis on Natural Sciences. J. Math. Chem. 2016, 54, 10–17. [Google Scholar] [CrossRef]
- Barabás, B.; Fülöp, O. Graph Theoretical and Statistical Analysis of the Impact of Soai Reaction on Natural Sciences. In Advances in Asymmetric Autocatalysis and Related Topics; Pályi, G., Kurdi, R., Zucchi, C., Eds.; Academic Press: London, UK, 2017; pp. 53–69. [Google Scholar] [CrossRef]
- Barabás, B.; Fulop, O.; Molontay, R.; Pályi, G. Impact of the Discovery of Fluorous Biphasic Systems on Chemistry: A Statistical and Network Analysis. ACS Sustain. Chem. Eng. 2017, 5, 8108–8118. [Google Scholar] [CrossRef]
- Barabás, B.; Fülöp, O.; Nagy, M.; Pályi, G. Progress in the Valorization of Biomass: A Statistical Perspective. J. Math. Chem. 2024, 62, 951–972. [Google Scholar] [CrossRef]
- Molontay, R.; Nagy, M. Twenty Years of Network Science: A Bibliographic and Co-authorship Network Analysis. In Big Data and Social Media Analytics; Cakirtas, M., Ozdemir, M.K., Eds.; Springer Nature: Cham, Switzerland, 2021; pp. 1–24. [Google Scholar] [CrossRef]
- Web of Science. Available online: https://www.webofscience.com/wos/woscc/basic-search (accessed on 10 April 2024).
- Pipek, J.; Mezey, P.G. A Fast Intrinsic Localization Procedure Applicable for Ab Initio and Semiempirical Linear Combination of Atomic Orbital Wave Functions. J. Chem. Phys. 1989, 90, 4916–4926. [Google Scholar] [CrossRef]
- Csárdi, G.; Nepusz, T. The Igraph Software Package for Complex Network Research. InterJ. Complex Syst. 2006, 1695, 1–9. [Google Scholar]
- Newman, M.E.J. Finding Community Structure in Networks Using the Eigenvectors of Matrices. Phys. Rev. E 2006, 74, 036104. [Google Scholar] [CrossRef]
- Newman, M.E.J. Networks: An Introduction, 1st ed.; Oxford University Press: New York, NY, USA, 2010; pp. 338–384. [Google Scholar] [CrossRef]
- Arteca, G.A.; Mezey, P.G. Molecular Conformations and Molecular Shape: A Discrete Characterization of Continua of van der Waals Surfaces. Int. J. Quantum Chem. 1988, 34, 517–526. [Google Scholar] [CrossRef]
- Arteca, G.A.; Mezey, P.G. Shape Characterization of Some Molecular Model Surfaces. J. Comput. Chem. 1988, 9, 554–563. [Google Scholar] [CrossRef]
- Arteca, G.A.; Mezey, P.G. Configurational Dependence of Molecular Shape. J. Math. Chem. 1992, 10, 329–371. [Google Scholar] [CrossRef]
- Arteca, G.A.; Mezey, P.G. Shape Group Theory of van der Waals Surfaces. J. Math. Chem. 1989, 3, 43–71. [Google Scholar] [CrossRef]
- Arteca, G.A.; Mezey, P.G. Analysis of Molecular Shape Changes Along Reaction Paths. Int. J. Quantum Chem. 1990, 38, 713–726. [Google Scholar] [CrossRef]
- Arimoto, S.; Fukui, K.; Taylor, K.F.; Mezey, P.G. Structural Analysis of Certain Linear Operators Representing Chemical Network Systems via the Existence and Uniqueness Theorems of Spectral Resolution, I. Int. J. Quantum Chem. 1995, 53, 375–386. [Google Scholar] [CrossRef]
- Zimpel, Z.; Mezey, P.G. A Topological Analysis of Molecular Shape and Structure. Int. J. Quantum Chem. 1996, 59, 379–390. [Google Scholar] [CrossRef]
- Zimpel, Z.; Mezey, P.G. Molecular Geometry and Symmetry from a Differential Geometry Viewpoint. Int. J. Quantum Chem. 1997, 64, 669–678. [Google Scholar] [CrossRef]
- Arteca, G.A.; Grant, N.D.; Mezey, P.G. Variable Atomic Radii Based on Some Approximate Configurational Invariance and Transferability Properties of the Electron Density. J. Comput. Chem. 1991, 12, 1198–1210. [Google Scholar] [CrossRef]
- Arteca, G.A.; Mezey, P.G. Similarities Between the Effects of Configurational Changes and Applied Electric Fields on the Shape of Electron Densities. J. Mol. Struct. Theochem. 1992, 256, 125–134. [Google Scholar] [CrossRef]
- Arteca, G.A.; Mezey, P.G. Deformation of Electron Densities in Static Electric Fields: Shape Group-Analysis for Small Molecules. Chem. Phys. 1992, 161, 1–9. [Google Scholar] [CrossRef]
- Walker, P.D.; Mezey, P.G. Molecular Electron Density Lego Approach to Molecule Building. J. Am. Chem. Soc. 1993, 115, 12423–12430. [Google Scholar] [CrossRef]
- Walker, P.D.; Arteca, G.A.; Mezey, P.G. Shape Groups of the Electronic Isodensity Surfaces for Small Molecules: Shapes for 10-Electron Hydrides. J. Comput. Chem. 1993, 14, 1172–1183. [Google Scholar] [CrossRef]
- Arteca, G.A.; Heal, G.A.; Mezey, P.G. Comparison of Potential Energy Maps and Molecular Shape Invariance Maps for Two-Dimensional Conformational Problems. Theoret. Chim. Acta 1990, 76, 377–390. [Google Scholar] [CrossRef]
- Rozas, I.; Arteca, G.A.; Mezey, P.G. On the Inhibition of Alcohol Dehydrogenase: Shape Group Analysis of Molecular Electrostatic Potential on van der Waals Surfaces for Some Pyrazole Derivatives. Int. J. Quantum Chem. 1991, 40, 269–288. [Google Scholar] [CrossRef]
- Walker, P.D.; Arteca, G.A.; Mezey, P.G. A Complete Shape Characterization for Molecular Charge Densities Represented by Gaussian-Type Functions. J. Comput. Chem. 1991, 12, 220–230. [Google Scholar] [CrossRef]
- Arteca, G.A.; Mezey, P.G. A Measure of Roughness of Cross Sections of Molecular Surfaces. Theor. Chim. Acta 1991, 81, 79–93. [Google Scholar] [CrossRef]
- Arteca, G.A.; Jammal, V.B.; Mezey, P.G.; Yadav, J.S.; Hermsmeier, M.A.; Gund, T.G. Shape Group Studies of Molecular Similarity: Relative Shapes of van der Waals and Electrostatic Potential Surfaces of Nicotinic Agonists. J. Mol. Graph. 1988, 6, 45–53. [Google Scholar] [CrossRef]
- Walker, P.D.; Maggiora, G.M.; Johnson, M.A.; Petke, J.D.; Mezey, P.G. Shape Group Analysis of Molecular Similarity: Shape Similarity of Six-Membered Aromatic Ring Systems. J. Chem. Inf. Comput. Sci. 1995, 35, 568–578. [Google Scholar] [CrossRef]
- Arteca, G.A.; Jammal, V.B.; Mezey, P.G. Shape Group Studies of Molecular Similarity and Regioselectivity in Chemical Reactions. J. Comput. Chem. 1988, 9, 608–619. [Google Scholar] [CrossRef]
- Arteca, G.A.; Mezey, P.G. Molecular Similarity and Molecular Shape Changes Along Reaction Paths: A Topological Analysis and Consequences on the Hammond Postulate. J. Phys. Chem. 1989, 93, 4746–4751. [Google Scholar] [CrossRef]
- Arteca, G.A.; Hernandez-Laguna, A.; Randez, J.J.; Smeyers, Y.G.; Mezey, P.G. A Topological Analysis of Molecular Electrostatic Potential on van der Waals Surfaces for Histamine and 4-Substituted Derivatives as H2-Receptor Agonists. J. Comput. Chem. 1991, 12, 705–716. [Google Scholar] [CrossRef]
- Arteca, G.A.; Mezey, P.G. An Energy and Shape Analysis Along Reaction Paths of Chemical Reactions. The Case Hydrogen-Deuterium Exchange. J. Mol. Struct. Theochem. 1991, 230, 323–338. [Google Scholar] [CrossRef]
- Luo, X.; Arteca, G.A.; Mezey, P.G. Shape Similarity and Shape Stability Along Reaction Paths: The Case of the PPO → OPP Isomerization. Int. J. Quantum Chem. 1992, 42, 459–474. [Google Scholar] [CrossRef]
- Wang, L.J.; Wang, L.Q.; Arimoto, S.; Mezey, P.G. Large-Scale Chirality Measures and General Symmetry Deficiency Measures for Functional Group Polyhedra of Proteins. J. Math. Chem. 2006, 40, 145–153. [Google Scholar] [CrossRef]
- Mezey, P.G. Quantum Similarity Measures and Löwdin’s Transform for Approximate Density Matrices and Macromolecular Forces. Int. J. Quantum Chem. 1998, 63, 39–48. [Google Scholar] [CrossRef]
- Walker, P.D.; Mezey, P.G. Representation of Square-Cell Configurations in the Complex Plane: Tools for Characterization of Molecular Monolayers and Cross Sections of Molecular Surfaces. Int. J. Quantum Chem. 1992, 43, 375–392. [Google Scholar] [CrossRef]
- Walker, P.D.; Mezey, P.G. Toward Similarity Measures for Macromolecular Bodies: MEDLA Test Calculations for Substituted Benzene Systems. J. Comput. Chem. 1995, 16, 1238–1249. [Google Scholar] [CrossRef]
- Walker, P.D.; Mezey, P.G.; Maggiora, G.M.; Johnson, M.A.; Petke, J.D. Application of the Shape Group Method to Conformational Processes: Shape and Conjugation Changes in the Conformers of 2-Phenyl Pyrimidine. J. Comput. Chem. 1995, 16, 1474–1482. [Google Scholar] [CrossRef]
- Mezey, P.G.; Zimpel, Z.; Warburton, P.; Walker, P.D.; Irvine, D.G.; Dixon, D.G.; Greenberg, B. A High-Resolution Shape-Fragment MEDLA Database for Toxicological Shape Analysis of PAHs. J. Chem. Inf. Comput. Sci. 1996, 36, 503–515. [Google Scholar] [CrossRef]
- Heal, G.A.; Walker, P.D.; Mezey, P.G.; Ramek, M. Shape-Similarity Analysis of 20 Stable Conformations of Neutral β-Alanine. Can. J. Chem. 1996, 74, 1660–1670. [Google Scholar] [CrossRef]
- Mezey, P.G.; Zimpel, Z.; Warburton, P.; Walker, P.D.; Irvine, D.G.; Huang, X.D.; Dixon, D.G.; Greenberg, B.M. Use of Quantitative Shape-Activity Relationships to Model the Photoinduced Toxicity of Polycyclic Aromatic Hydrocarbons: Electron Density Shape Features Accurately Predict Toxicity. Environ. Toxicol. Chem. 2009, 17, 1207–1215. [Google Scholar] [CrossRef]
- Mezey, P.G.; Walker, P.D. Fuzzy Molecular Fragments in Drug Research. Drug Discov. Today 1997, 2, 132–137. [Google Scholar] [CrossRef]
- Arteca, G.A.; Tapia, O.; Mezey, P.G. Implementing Knot-Theoretical Characterization Methods to Analyze the Backbone Structure of Proteins: Application to CTF L7/L12 and Carboxypeptidase A Inhibitor Proteins. J. Mol. Graph. 1991, 9, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Arteca, G.A.; Mezey, P.G. The Shapes of Backbones of Chain Molecules: Three-Dimensional Characterization by Spherical Shape Maps. Biopolymers 1992, 32, 1609–1621. [Google Scholar] [CrossRef]
- Walker, P.D.; Mezey, P.G. Ab Initio Quality Electron Densities for Proteins: A MEDLA Approach. J. Am. Chem. Soc. 1994, 116, 12022–12032. [Google Scholar] [CrossRef]
- Walker, P.D.; Mezey, P.G. Realistic, Detailed Images of Proteins and Tertiary Structure Elements: Ab Initio Quality Electron Density Calculations for Bovine Insulin. Can. J. Chem. 1994, 72, 2531–2536. [Google Scholar] [CrossRef]
- Walker, P.D.; Mezey, P.G. A New Computational Microscope for Molecules: High-Resolution MEDLA Images of Taxol and HIV-1 Protease, Using Additive Electron Density Fragmentation Principles and Fuzzy Set Methods. J. Math. Chem. 1995, 17, 203–234. [Google Scholar] [CrossRef]
- Nobel Committee, Press Release. Available online: https://nobelprize.org/prizes/chemistry/2024 (accessed on 10 October 2024).
- Mezey, P.G. Molecular Modeling and the Violation of Linear Scaling Principles. AIP Conf. Proc. 2012, 1504, 43–49. [Google Scholar] [CrossRef]
- Du, Q.S.; Arteca, G.A.; Mezey, P.G. Heuristic Lipophilicity Potential for Computer-Aided Rational Drug Design. J. Comput. Aided Mol. Des. 1997, 11, 503–515. [Google Scholar] [CrossRef]
- Du, Q.S.; Mezey, P.G. Heuristic Lipophilicity Potential for Computer-Aided Rational Drug Design: Optimizations of Screening Functions and Parameters. J. Comput. Aided Mol. Des. 1998, 12, 451–470. [Google Scholar] [CrossRef]
- Mezey, P.G. Molecular Modeling: An Open Invitation for Applied Mathematics. AIP Conf. Proc. 2013, 1558, 44–47. [Google Scholar] [CrossRef]
- Mezey, P.G. Decomposition and Fragmentation Principles in Computational Chemistry. AIP Conf. Proc. 2015, 1702, 020002. [Google Scholar] [CrossRef]
- Frolov, A.; Jako, E.; Mezey, P.G. Metric Properties of Factor Space of Molecular Shapes. J. Math. Chem. 2001, 30, 411–428. [Google Scholar] [CrossRef]
- Frolov, A.; Jako, E.; Mezey, P.G. Logical Models of Molecular Shapes and Their Families. J. Math. Chem. 2001, 30, 389–409. [Google Scholar] [CrossRef]
- Yu, V.W.Z.; Campos, C.; Dawson, W.; García, A.; Havu, V.; Hourahine, B.; Huhn, W.P.; Jacquelin, M.; Jia, W.; Blum, V.; et al. ELSI—An Open Infrastructure for Electronic Structure Solvers. Comput. Phys. Commun. 2020, 256, 107459. [Google Scholar] [CrossRef]
- Rivera-Borroto, O.M.; Marrero-Ponce, Y.; Meneses-Marcel, A.; Escario, J.A.; Gomez Barrio, A.; Aran, V.J.; Alho, M.A.M.; Pereira, D.M.; Nogal, J.J.; Vogel, C.; et al. Discovery of Novel Trichomonacidals Using LDA-Driven QSAR Models and Bond-Based Bilinear Indices as Molecular Descriptors. QSAR Comb. Sci. 2009, 28, 9–26. [Google Scholar] [CrossRef]
- Hupf, E.; Kleemiss, F.; Borrmann, T.; Pal, R.; Krzeszczakowska, J.M.; Woinska, M.; Jayatilaka, D.; Genoni, A.; Grabowsky, S. The Effects of Experimentally Obtained Electron Correlation and Polarization on Electron Densities and Exchange-Correlation Potentials. J. Chem. Phys. 2023, 158, 124103. [Google Scholar] [CrossRef]
- Mezey, P.G. From Quantum Similarity Measures to Quantum Analogy Functors: Tools for QShAR, Quantitative Shape-Activity Relations. Theor. Chem. Acc. 2021, 140, 53. [Google Scholar] [CrossRef]
- Mezey, P.G. On the Relative Measures of the Degrees of Chirality and General Asymmetry. In Advances in Asymmetric Autocatalysis and Related Topics; Pályi, G., Kurdi, R., Zucchi, C., Eds.; Academic Press: London, UK, 2017; pp. 203–222. [Google Scholar] [CrossRef]
- Mezey, P.G. Shape in Chemistry: An Introduction to Molecular Shape and Topology; Wiley-VCH: New York, NY, USA, 1993; pp. 1–240. [Google Scholar]
Author Keywords | Frequency |
---|---|
molecular shape | 11 |
holographic electron density theorem | 8 |
molecular modeling | 7 |
electron density | 6 |
macromolecular quantum chemistry | 5 |
QSAR (quantitative structure-activity relations) | 4 |
shape analysis | 4 |
chirality | 3 |
fragment similarity | 3 |
molecular similarity | 3 |
symmetry | 3 |
symmetry deficiency | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barabás, B.; Fülöp, O.; Pályi, G. Fine-Tuning of Aspects of Chirality by Co-Authorship Networks. Symmetry 2025, 17, 825. https://doi.org/10.3390/sym17060825
Barabás B, Fülöp O, Pályi G. Fine-Tuning of Aspects of Chirality by Co-Authorship Networks. Symmetry. 2025; 17(6):825. https://doi.org/10.3390/sym17060825
Chicago/Turabian StyleBarabás, Béla, Ottilia Fülöp, and Gyula Pályi. 2025. "Fine-Tuning of Aspects of Chirality by Co-Authorship Networks" Symmetry 17, no. 6: 825. https://doi.org/10.3390/sym17060825
APA StyleBarabás, B., Fülöp, O., & Pályi, G. (2025). Fine-Tuning of Aspects of Chirality by Co-Authorship Networks. Symmetry, 17(6), 825. https://doi.org/10.3390/sym17060825