Symmetrical Configuration Design and Experimental Study of a Repeatable Stowing Deployment Flexible Solar Array
Abstract
:1. Introduction
2. Fan-Shaped Flexible Solar Cell Array
3. Methodologies
3.1. Numerical Approach
3.1.1. Model Building
3.1.2. Thermal Environment Analysis
3.2. Experiment Design
3.2.1. Experimental Approach
3.2.2. Test Content
4. Results and Discussion
4.1. Thermal Analysis Results
4.2. Analysis and Discussion of Test Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, S.; Liang, X.; Shao, L.; Ma, J.; Cheng, Z.; Jiang, X.; Cai, J. Development and Trend of Spacial Flexible Solar Array. Yuhang Xuebao 2023, 44, 1810–1819. [Google Scholar]
- Hoang, B.; White, S.; Spence, B.; Kiefer, S. Commercialization of Deployable Space Systems’ roll-out solar array (ROSA) technology for Space Systems Loral (SSL) solar arrays. In Proceedings of the 2016 IEEE Aerospace Conference, Big Sky, MT, USA, 5–12 March 2016; pp. 1–12. [Google Scholar]
- Yan, Y.; Li, J.; Huang, H.; Wang, C.; Li, P.; Mei, J.; Cheng, B.; Zhang, D. Design and investigation of flexible solar wing: In-plane dynamics. Int. J. Mech. Sci. 2024, 283, 109673. [Google Scholar] [CrossRef]
- Li, J.; Hu, M.; Meng, S.; Zhang, L.; Gao, X.; Zhang, D. Analysis of modal shape and harmonic response of folding mechanism of fan-shaped solar arrays. Hangtian Qi Huanjing Gongcheng 2020, 37, 435–439. [Google Scholar]
- Boulanger, B.; Baudassé, Y.; Guinot, F.; D’abrigeon, L.; Thibaudeau, M.; Heim, M.; Buffe, F.; Rapp, E. Development of Innovative Mechanical Flexible Solar Array Architecture. E3S Web Conf. 2017, 16, 01005. [Google Scholar] [CrossRef]
- Angmo, D.; Yan, S.; Liang, D.; Scully, A.D.; Chesman, A.S.R.; Kellam, M.; Duffy, N.W.; Carter, N.; Chantler, R.; Chen, C.; et al. Toward Rollable Printed Perovskite Solar Cells for Deployment in Low-Earth Orbit Space Applications. ACS Appl. Energy Mater. 2024, 7, 1777–1791. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, W.; Zhang, S. Deployment Dynamics for a Flexible Solar Array Composed of Composite-Laminated Plates. J. Aerosp. Eng. 2020, 33, 04020071. [Google Scholar] [CrossRef]
- Jones, P.A.; Spence, B.R. Spacecraft solar array technology trends. IEEE Aerosp. Electron. Syst. Mag. 2011, 26, 17–28. [Google Scholar] [CrossRef]
- Murphy, D.; Eskenazi, M.; McEachen, M.; Spink, J. UltraFlex and MegaFlex-Development of highly scalable solar power. In Proceedings of the 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, USA, 14–19 June 2015; p. 8. [Google Scholar]
- Hu, M.; Li, W.; Chen, W.; Tian, F.; Zhang, Y. Motion simulation and function test on repeated fold-unfold mechanism of fan-shaped solar array. CJSS 2022, 36, 92–98. [Google Scholar] [CrossRef]
- Yan, B.; Qin, L.; Tao, S.; Fang, G. Development and challenges of large space flexible solar arrays. Space Sol. Power Wirel. Transm. 2025, 2, 33–42. [Google Scholar] [CrossRef]
- Vielma-Quintero, J.C.; Diaz-Segura, E.G.; Vielma, J.C. Influence of the Plan Structural Symmetry on the Non-Linear Seismic Response of Framed Reinforced Concrete Buildings. Symmetry 2024, 16, 370. [Google Scholar] [CrossRef]
- Vlase, S.; Öchsner, A.; Marin, M. Dynamic properties of the structures with three level of symmetry. Contin. Mech. Thermodyn. 2025, 37, 23. [Google Scholar] [CrossRef]
- Meng, X.; Cheng, K.; Zhao, Q.; Chen, X. Hierarchical Hypervapotron Structure Integrated with Microchannels for Advancement of Thermohydraulic Performance. Symmetry 2024, 16, 1089. [Google Scholar] [CrossRef]
- Zhou, Z.; Wu, Y.; Wang, J.; Liu, Y.; Yan, Z.; Hang, C. Development and Trend of Circular Solar Array. Spacecr. Eng. 2015, 6, 116–122. [Google Scholar]
- Liu, J.; Yin, X.; Song, X.; Xiao, Y. Future solar array scenario for lunar research station. Dianyuan Jishu 2024, 48, 416–420. [Google Scholar]
Physical Parameter Name | Notation | Value |
---|---|---|
Sector flex wing solar absorption | 0.62 | |
Solar emissivity of sector flex wing | 0.91 | |
The solar constant at the Moon’s surface | 1367 W/m2 | |
Average radius of the Earth | 6.371 × 106 m | |
Earth–Moon distance | 3.8 × 108 m | |
Stephen Boltzmann’s constant | 5.67 × 10−8 W/m2K4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, L.; Zhang, A.; Cui, Q.; Wan, D.; Ye, Z.; Yue, P. Symmetrical Configuration Design and Experimental Study of a Repeatable Stowing Deployment Flexible Solar Array. Symmetry 2025, 17, 822. https://doi.org/10.3390/sym17060822
Cheng L, Zhang A, Cui Q, Wan D, Ye Z, Yue P. Symmetrical Configuration Design and Experimental Study of a Repeatable Stowing Deployment Flexible Solar Array. Symmetry. 2025; 17(6):822. https://doi.org/10.3390/sym17060822
Chicago/Turabian StyleCheng, Lei, Aoxiang Zhang, Qifeng Cui, Desheng Wan, Zhexiao Ye, and Peng Yue. 2025. "Symmetrical Configuration Design and Experimental Study of a Repeatable Stowing Deployment Flexible Solar Array" Symmetry 17, no. 6: 822. https://doi.org/10.3390/sym17060822
APA StyleCheng, L., Zhang, A., Cui, Q., Wan, D., Ye, Z., & Yue, P. (2025). Symmetrical Configuration Design and Experimental Study of a Repeatable Stowing Deployment Flexible Solar Array. Symmetry, 17(6), 822. https://doi.org/10.3390/sym17060822