A New Joint Limit Theorem of Bohr–Jessen Type for Epstein Zeta-Functions
Abstract
1. Introduction
2. Case of
3. Case of Absolute Convergence
4. Estimate in the Mean
5. Proof of Theorem 3
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Epstein, P. Zur Theorie allgemeiner Zetafunktionen. Math. Ann. 1903, 56, 615–644. [Google Scholar] [CrossRef]
- Voronin, S.M. The zeros of the functions of quadratic forms. Tr. Mat. Inst. Steklova 1976, 142, 135–147. (In Russian) [Google Scholar]
- Steuding, J. On the zero-distribution of Epstein zeta-functions. Math. Ann. 2005, 333, 689–697. [Google Scholar] [CrossRef]
- Bombieri, E.; Mueller, J. On the zeros of certain Epstein zeta-functions. Forum Math. 2008, 20, 359–385. [Google Scholar] [CrossRef]
- Lee, Y. On the zeros of Epstein zeta-functions. Forum Math. 2014, 26, 1807–1836. [Google Scholar] [CrossRef]
- Schmeller, C. On the uniform distribution of zero ordinates of Epstein zeta-functions. Lith. Math. J. 2018, 58, 198–211. [Google Scholar] [CrossRef]
- Garunkštis, R.; Kondratavičius, T.; Putrius, J. Sum of the Epstein Zeta-Function over the Riemann Zeta Function Zeros. Lith. Math. J. 2025. earlier access. [Google Scholar] [CrossRef]
- Glasser, M.L.; Zucker, I.J. Lattice Sums in Theoretical Chemistry. In Theoretical Chemistry: Advances and Perspectives; Eyring, H., Ed.; Academic Press: New York, NY, USA, 1980; Volume 5, pp. 67–139. [Google Scholar]
- Elizalde, E. Ten Physical Applications of Spectral Zeta Functions; Lecture Notes Physics; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Elizalde, E. Multidimensional extension of the generalized Chowla-Selberg formula. Commun. Math. Phys. 1998, 198, 83–95. [Google Scholar] [CrossRef]
- Elizalde, E.; Romeo, A. Epstein-function analysis of the Casimir effect at finite temperature for massive fields. Intern. J. Mod. Phys. A 1992, 7, 7365–7399. [Google Scholar] [CrossRef]
- Chen, H.-B.; Li, X.-Z. Casimir energies on a twisted two-torus. Chin. Phys. Lett. 2005, 18, 1163–1166. [Google Scholar]
- Jiang, T. Epstein zeta function and heavy-quark potential at finite temperature from Nambu-Goto string. Phys. Lett. 1996, 371, 298–302. [Google Scholar] [CrossRef]
- Cohn, H.; Kumar, A.; Miller, S.D.; Radchenko, O.; Viazovska, M. Universal optimality of the E8 and Leech lattices and interpolation formulas. Ann. Math. 2017, 185, 1017–1033. [Google Scholar]
- Hecke, E. Über Modulfunktionen und die Dirichletchen Reihen mit Eulerscher Produktentwicklung. I, II. Math. Ann. 1937, 114, 316–351. [Google Scholar] [CrossRef]
- Iwaniec, H. Topics in Classical Automorphic Forms, Graduate Studies in Mathematics; American Mathematical Society: Providence, RI, USA, 1997; Volume 17. [Google Scholar]
- Laurinčikas, A.; Macaitienė, R. A Bohr-Jessen type theorem for the Epstein zeta-function. Results Math. 2018, 73, 148. [Google Scholar] [CrossRef]
- Bohr, H.; Jessen, B. Über die Wertverteilung der Riemanschen Zetafunktion, Erste Mitteilung. Acta Math. 1930, 54, 1–35. [Google Scholar] [CrossRef]
- Bohr, H.; Jessen, B. Über die Wertverteilung der Riemanschen Zetafunktion, Zweite Mitteilung. Acta Math. 1932, 58, 1–55. [Google Scholar] [CrossRef]
- Bagchi, B. The Statistical Behaviour and Universality Properties of the Riemann Zeta-Function and Other allied Dirichlet Series. Ph.D. Thesis, Indian Statistical Institute, Calcutta, India, 1981. [Google Scholar]
- Fomenko, O.M. Order of the Epstein zeta-function in the critical strip. J. Math. Sci. 2002, 110, 3150–3163. [Google Scholar] [CrossRef]
- Laurinčikas, A.; Macaitienė, R. A Bohr-Jessen type theorem for the Epstein zeta-function. III. Results Math. 2021, 76, 105. [Google Scholar] [CrossRef]
- Laurinčikas, A.; Macaitienė, R. A generalized Bohr-Jessen type theorem for the Epstein zeta-function. Mathematics 2022, 10, 2042. [Google Scholar] [CrossRef]
- Billingsley, P. Convergence of Probability Measures, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1999. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laurinčikas, A.; Macaitienė, R. A New Joint Limit Theorem of Bohr–Jessen Type for Epstein Zeta-Functions. Symmetry 2025, 17, 814. https://doi.org/10.3390/sym17060814
Laurinčikas A, Macaitienė R. A New Joint Limit Theorem of Bohr–Jessen Type for Epstein Zeta-Functions. Symmetry. 2025; 17(6):814. https://doi.org/10.3390/sym17060814
Chicago/Turabian StyleLaurinčikas, Antanas, and Renata Macaitienė. 2025. "A New Joint Limit Theorem of Bohr–Jessen Type for Epstein Zeta-Functions" Symmetry 17, no. 6: 814. https://doi.org/10.3390/sym17060814
APA StyleLaurinčikas, A., & Macaitienė, R. (2025). A New Joint Limit Theorem of Bohr–Jessen Type for Epstein Zeta-Functions. Symmetry, 17(6), 814. https://doi.org/10.3390/sym17060814