An Efficient Q-Learning-Based Multi-Objective Intelligent Hybrid Genetic Algorithm for Mixed-Model Assembly Line Efficiency
Abstract
:1. Introduction
1.1. Related Literature
1.2. Research Gap
1.3. Structure of the Paper
2. Problem Description and Mathematical Model
3. Proposed Optimization Approach
3.1. Reinforcement Learning-Based Parameter Tuning
3.1.1. State Definition
3.1.2. Action Definition
3.1.3. Reward Function
Algorithm 1. Intelligent Hybrid Genetic Algorithm with Q-Learning |
Input: problem_files, mutation set M, crossover set C, episodes E, learning rate α, discount factor β, initial exploration ε, decay εdecay, action magnitudes cc, cr, stagnation threshold Ts Output: , final Pareto fronts, cycle time Z1, avg. flow time Z2 |
4. Empirical Application Proposed Approach
4.1. Implementation of the Proposed Approach
4.2. Performance Analysis
5. Computational Experiments and Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boysen, N.; Fliedner, M.; Scholl, A. Sequencing mixed-model assembly lines: Survey, classification and model critique. Eur. J. Oper. Res. 2009, 192, 349–373. [Google Scholar] [CrossRef]
- Liu, X.; Yang, X.; Lei, M. Optimisation of mixed-model assembly line balancing problem under uncertain demand. J. Manuf. Syst. 2021, 59, 214–227. [Google Scholar] [CrossRef]
- Fattahi, P.; Askari, A. A Multi-objective mixed-model assembly line sequencing problem with stochastic operation time. J. Optim. Ind. Eng. 2018, 11, 157–167. [Google Scholar]
- Manavizadeh, N.; Tavakoli, L.; Rabbani, M.; Jolai, F. A multi-objective mixed-model assembly line sequencing problem in order to minimize total costs in a Make-To-Order environment, considering order priority. J. Manuf. Syst. 2013, 32, 124–137. [Google Scholar] [CrossRef]
- Bai, Y.; Zhao, H.; Zhu, L. Mixed-model assembly line balancing using the hybrid genetic algorithm. In Proceedings of the 2009 International Conference on Measuring Technology and Mechatronics Automation, Zhangjiajie, China, 11–12 April 2009; pp. 242–245. [Google Scholar]
- Simaria, A.S.; Vilarinho, P.M. A genetic algorithm based approach to the mixed-model assembly line balancing problem of type II. Comput. Ind. Eng. 2004, 47, 391–407. [Google Scholar] [CrossRef]
- Mamun, A.A.; Khaled, A.A.; Ali, S.M.; Chowdhury, M.M. A heuristic approach for balancing mixed-model assembly line of type I using genetic algorithm. Int. J. Prod. Res. 2012, 50, 5106–5116. [Google Scholar] [CrossRef]
- Özcan, U.; Çerçioğlu, H.; Gökçen, H.; Toklu, B. Balancing and sequencing of parallel mixed-model assembly lines. Int. J. Prod. Res. 2010, 48, 5089–5113. [Google Scholar] [CrossRef]
- Chica, M.; Cordón, Ó.; Damas, S.; Bautista, J. A robustness information and visualization model for time and space assembly line balancing under uncertain demand. Int. J. Prod. Econ. 2013, 145, 761–772. [Google Scholar] [CrossRef]
- Bautista, J.; Alfaro, R.; Batalla, C. Modeling and solving the mixed-model sequencing problem to improve productivity. Int. J. Prod. Econ. 2015, 161, 83–95. [Google Scholar] [CrossRef]
- Mosadegh, H.; Ghomi, S.F.; Süer, G. Heuristic approaches for mixed-model sequencing problem with stochastic processing times. Int. J. Prod. Res. 2017, 55, 2857–2880. [Google Scholar] [CrossRef]
- Bautista, J.; Alfaro-Pozo, R.; Batalla-García, C. Consideration of human resources in the Mixed-model Sequencing Problem with Work Overload Minimization: Legal provisions and productivity improvement. Expert Syst. Appl. 2015, 42, 8896–8910. [Google Scholar] [CrossRef]
- Yang, C.; Gao, J.; Sun, L. A multi-objective genetic algorithm for mixed-model assembly line rebalancing. Comput. Ind. Eng. 2013, 65, 109–116. [Google Scholar] [CrossRef]
- Mumtaz, J.; Zailin, G.; Mirza, J.; Rauf, M.; Sarfraz, S.; Shehab, E. Makespan minimization for flow shop scheduling problems using modified operators in genetic algorithm. In Advances in Manufacturing Technology XXXII; IOS Press: Amsterdam, The Netherlands, 2018; pp. 435–440. [Google Scholar]
- Zhang, B.; Xu, L.; Zhang, J. A multi-objective cellular genetic algorithm for energy-oriented balancing and sequencing problem of mixed-model assembly line. J. Clean. Prod. 2020, 244, 118845. [Google Scholar] [CrossRef]
- Noorul Haq, A.; Rengarajan, K.; Jayaprakash, J. A hybrid genetic algorithm approach to mixed-model assembly line balancing. Int. J. Adv. Manuf. Technol. 2006, 28, 337–341. [Google Scholar] [CrossRef]
- Su, P.; Lu, Y. Combining genetic algorithm and simulation for the mixed-model assembly line balancing problem. In Proceedings of the Third International Conference on Natural Computation (ICNC 2007), Haikou, China, 24–27 August 2007; pp. 314–318. [Google Scholar]
- Sivasankaran, P.; Shahabudeen, P.M. Genetic algorithm for concurrent balancing of mixed-model assembly lines with original task times of models. Intell. Inf. Manag. 2013, 5, 84–92. [Google Scholar] [CrossRef]
- Delice, Y.; Aydoğan, E.K.; Söylemez, İ.; Özcan, U. An ant colony optimisation algorithm for balancing two-sided U-type assembly lines with sequence-dependent set-up times. Sādhanā 2018, 43, 199. [Google Scholar] [CrossRef]
- Li, J.; Gao, J. Balancing manual mixed-model assembly lines using overtime work in a demand variation environment. Int. J. Prod. Res. 2014, 52, 3552–3567. [Google Scholar] [CrossRef]
- Tang, Q.; Liang, Y.; Zhang, L.; Floudas, C.A.; Cao, X. Balancing mixed-model assembly lines with sequence-dependent tasks via hybrid genetic algorithm. J. Glob. Optim. 2016, 65, 83–107. [Google Scholar] [CrossRef]
- Hu Li, B.; Xiao, T.; Zhang, L.; Xu, W.; Xiao, T. Robust balancing of mixed model assembly line. COMPEL-Int. J. Comput. Math. Electr. Electron. Eng. 2009, 28, 1489–1502. [Google Scholar] [CrossRef]
- Chong, K.E.; Omar, M.K.; Bakar, N.A. Solving assembly line balancing problem using genetic algorithm with heuristics-treated initial population. In Proceedings of the the World Congress on Engineering, London, UK, 2–4 July 2008. [Google Scholar]
- Yu, Z.-Q.; Su, P. Combining genetic algorithm and simulation analysis for mixed-model assembly line balancing problem. Comput. Integr. Manuf. Syst. 2008, 6, 12. [Google Scholar]
- Akpınar, S.; Bayhan, G.M. A hybrid genetic algorithm for mixed model assembly line balancing problem with parallel workstations and zoning constraints. Eng. Appl. Artif. Intell. 2011, 24, 449–457. [Google Scholar] [CrossRef]
- AkpıNar, S.; Bayhan, G.M.; Baykasoglu, A. Hybridizing ant colony optimization via genetic algorithm for mixed-model assembly line balancing problem with sequence dependent setup times between tasks. Appl. Soft Comput. 2013, 13, 574–589. [Google Scholar] [CrossRef]
- Kucukkoc, I.; Yaman, R. A new hybrid genetic algorithm to solve more realistic mixed-model assembly line balancing problem. Int. J. Logist. Syst. Manag. 2013, 14, 405–425. [Google Scholar] [CrossRef]
- Kazemi, S.M.; Ghodsi, R.; Rabbani, M.; Tavakkoli-Moghaddam, R. A novel two-stage genetic algorithm for a mixed-model U-line balancing problem with duplicated tasks. Int. J. Adv. Manuf. Technol. 2011, 55, 1111–1122. [Google Scholar] [CrossRef]
- Rabbani, M.; Montazeri, M.; Farrokhi-Asl, H.; Rafiei, H. A multi-objective genetic algorithm for a mixed-model assembly U-line balancing type-I problem considering human-related issues, training, and learning. J. Ind. Eng. Int. 2016, 12, 485–497. [Google Scholar] [CrossRef]
- Hamzadayi, A.; Yildiz, G. A genetic algorithm based approach for simultaneously balancing and sequencing of mixed-model U-lines with parallel workstations and zoning constraints. Comput. Ind. Eng. 2012, 62, 206–215. [Google Scholar] [CrossRef]
- He, X.; Hao, J. Adaptive and Improved Genetic Algorithm for Mixed-model Assembly Line Balancing Problem. Adv. Inf. Sci. Serv. Sci. 2013, 5, 375. [Google Scholar]
- Rabbani, M.; Siadatian, R.; Farrokhi-Asl, H.; Manavizadeh, N. Multi-objective optimization algorithms for mixed model assembly line balancing problem with parallel workstations. Cogent Eng. 2016, 3, 1158903. [Google Scholar] [CrossRef]
- Rekiek, B.; De Lit, P.; Pellichero, F.; L’Eglise, T.; Fouda, P.; Falkenauer, E.; Delchambre, A. A multiple objective grouping genetic algorithm for assembly line design. J. Intell. Manuf. 2001, 12, 467–485. [Google Scholar] [CrossRef]
- Zhang, W.; Gen, M. An efficient multiobjective genetic algorithm for mixed-model assembly line balancing problem considering demand ratio-based cycle time. J. Intell. Manuf. 2011, 22, 367–378. [Google Scholar] [CrossRef]
- Rabbani, M.; Mousavi, Z.; Farrokhi-Asl, H. Multi-objective metaheuristics for solving a type II robotic mixed-model assembly line balancing problem. J. Ind. Prod. Eng. 2016, 33, 472–484. [Google Scholar] [CrossRef]
- Rabani, M.; Yazdanbakhsh, M.; Farrokhi-Asl, H. Solving a multi-objective mixed-model assembly line balancing and sequencing problem. J. Ind. Syst. Eng. 2017, 10, 155–170. [Google Scholar]
- Ab Rashid, M.F.F.; Tiwari, A.; Hutabarat, W. Integrated optimization of mixed-model assembly sequence planning and line balancing using Multi-objective Discrete Particle Swarm Optimization. Artif. Intell. Eng. Des. Anal. Manuf. 2019, 33, 332–345. [Google Scholar] [CrossRef]
- Saif, U.; Guan, Z.; Zhang, L.; Zhang, F.; Wang, B.; Mirza, J. Multi-objective artificial bee colony algorithm for order oriented simultaneous sequencing and balancing of multi-mixed model assembly line. J. Intell. Manuf. 2019, 30, 1195–1220. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, Y.; Rauf, M.; Wang, C. Differential Evolution Algorithm to Solve the Parallel Batch Processing Machine Scheduling Problem with Multiple Jobs. Eng. Proc. 2023, 45, 22. [Google Scholar]
- Paprocka, I.; Krenczyk, D. On Energy Consumption and Productivity in a Mixed-Model Assembly Line Sequencing Problem. Energies 2023, 16, 7091. [Google Scholar] [CrossRef]
- Rauf, M.; Guan, Z.; Sarfraz, S.; Mumtaz, J.; Shehab, E.; Jahanzaib, M.; Hanif, M. A smart algorithm for multi-criteria optimization of model sequencing problem in assembly lines. Robot. Comput.-Integr. Manuf. 2020, 61, 101844. [Google Scholar] [CrossRef]
- Kim, Y.K.; Kim, J.Y.; Kim, Y. An endosymbiotic evolutionary algorithm for the integration of balancing and sequencing in mixed-model U-lines. Eur. J. Oper. Res. 2006, 168, 838–852. [Google Scholar] [CrossRef]
- Ding, L.; Luo, D.; Mudassar, R.; Yue, L.; Meng, L. A novel deep self-learning method for flexible job-shop scheduling problems with multiplicity: Deep reinforcement learning assisted the fluid master-apprentice evolutionary algorithm. Swarm Evol. Comput. 2025, 94, 101907. [Google Scholar] [CrossRef]
- Chen, Y.; Du, J.; Mumtaz, J.; Zhong, J.; Rauf, M. An efficient Q-learning integrated multi-objective hyper-heuristic approach for hybrid flow shop scheduling problems with lot streaming. Expert Syst. Appl. 2025, 262, 125616. [Google Scholar] [CrossRef]
- Su, H.; Wang, G.; Rauf, M. Optimization of Multi-Operator Human–Robot Collaborative Disassembly Line Balancing Problem Using Hybrid Artificial Fish Swarm Algorithm. Eng. Proc. 2024, 75, 16. [Google Scholar]
Reference | Method | Reference | Method |
---|---|---|---|
Tang, Liang [21] | RPW in the initial population | Bai, Zhao and Zhu [5] | Integration of GA with SA |
Haq, Rengarajan, and Jayaprakash [16] | RPW in the initial population | Hu Li, Xiao [22] | GA integrating robust criteria |
Chong, Omar, and Bakar [23] | RPW in the initial population | YU and SU [24] | Simulation-based GA |
Akpınar and Bayhan [25] | KW, RPW, and MYM in the initial population | Mamun, Khaled [7] | Priority rules for initial population |
AkpıNar, Bayhan, and Baykasoglu [26] | Ant colony optimization with GA | Kucukkoc and Yaman [27] | Modified Comsoal method and GA |
Kazemi, Ghodsi [28] | Two-stage GA | Simaria and Vilarinho [6,29] | Priority rules, iterative GA |
Hamzadayi and Yildiz [30] | Priority rules and hybrid GA | He and Hao [31,32] | Chromosome coding and decoding rule |
Rekiek, De Lit [33] | PROMETHEE | Zhang and Gen [34,35] | Pareto-based scale-independent GA |
0.05 | −0.05 | 0.07 | −0.07 |
Tasks/Models | A | B | C | D | E | Tasks/Models | A | B | C | D | E |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2.17 | 2.20 | 2.40 | 2.42 | 2.31 | 13 | 0.65 | 0.65 | 0.65 | 0.65 | 0.64 |
2 | 1.29 | 1.32 | 1.07 | 1.17 | 1.07 | 14 | 2.50 | 2.41 | 2.41 | 2.47 | 0.00 |
3 | 0.47 | 0.41 | 0.34 | 0.36 | 0.37 | 15 | 1.46 | 1.44 | 1.43 | 1.43 | 1.43 |
4 | 0.00 | 0.00 | 0.65 | 0.65 | 0.77 | 16 | 1.42 | 1.42 | 1.42 | 1.45 | 1.47 |
5 | 1.50 | 1.56 | 1.43 | 1.45 | 1.39 | 17 | 0.81 | 0.81 | 0.81 | 0.83 | 0.85 |
6 | 2.67 | 2.58 | 2.59 | 0.00 | 0.00 | 18 | 0.69 | 0.74 | 0.63 | 0.71 | 0.63 |
7 | 0.00 | 0.00 | 0.00 | 2.37 | 2.44 | 19 | 1.00 | 1.00 | 1.00 | 1.00 | 0.93 |
8 | 0.61 | 0.60 | 0.64 | 0.64 | 0.54 | 20 | 0.00 | 0.00 | 0.60 | 0.55 | 0.53 |
9 | 0.86 | 0.86 | 0.85 | 0.85 | 0.83 | 21 | 1.21 | 1.28 | 1.25 | 1.25 | 1.18 |
10 | 0.48 | 0.48 | 0.47 | 0.47 | 0.51 | 22 | 1.09 | 1.11 | 1.20 | 0.00 | 1.20 |
11 | 0.61 | 0.60 | 0.69 | 0.66 | 0.64 | 23 | 0.00 | 0.00 | 0.00 | 0.87 | 0.00 |
12 | 0.50 | 0.51 | 0.53 | 0.53 | 0.51 | 24 | 0.00 | 0.00 | 0.00 | 1.12 | 0.00 |
Stations | Station 1 | Station 2 | Station 3 | Station 4 | Station 5 | Station 6 | Station 7 | Model Sequence |
---|---|---|---|---|---|---|---|---|
Tasks | 1, 2, 3 | 4, 5, 8 | 6, 7, 9 | 10, 13, 15, 17 | 11, 12, 14 | 16, 18, 20, 22, 24 | 19, 21, 23, 25 |
PMs/Algorithms | Cycle Time | Flow Time | TOPSIS | Ranking |
---|---|---|---|---|
IHGA | 3.85 | 22.23 | 1 | 1 |
NSGA-II | 4.94 | 22.41 | 0.43 | 2 |
MOABC | 5.71 | 22.62 | 0.03 | 6 |
MOEAD | 5.15 | 22.37 | 0.32 | 3 |
MOGWO | 5.38 | 22.81 | 0.19 | 4 |
MOPSO | 5.53 | 22.26 | 0.12 | 5 |
BM 1 (n = 3, k = 20) | ||||||
---|---|---|---|---|---|---|
Algorithms | CT | FT | HV | IGD | NP | TOPSIS |
IHGA | 2.00 | 6.00 | 0.65 | 0.29 | 0.25 | 1.00 |
NSGA-II | 2.00 | 6.03 | 0.39 | 0.56 | 0.23 | 0.98 |
MOABC | 2.75 | 6.15 | 0.45 | 0.64 | 0.15 | 0.01 |
MOEAD | 2.20 | 6.00 | 0.61 | 0.61 | 0.08 | 0.73 |
MOGWO | 2.40 | 6.05 | 0.23 | 0.30 | 0.15 | 0.47 |
MOPSO | 2.10 | 6.18 | 0.09 | 0.46 | 0.23 | 0.84 |
BM 2 (n = 4, K= 62) | ||||||
Algorithms | CT | FT | HV | IGD | NP | TOPSIS |
IHGA | 18.30 | 87.90 | 472.64 | 21.95 | 0.25 | 1.00 |
NSGA-II | 19.80 | 87.90 | 439.04 | 31.11 | 0.08 | 0.90 |
MOABC | 27.70 | 106.06 | 20.17 | 24.55 | 0.25 | 0.29 |
MOEAD | 30.10 | 106.38 | 36.50 | 37.14 | 0.08 | 0.13 |
MOGWO | 31.95 | 87.90 | 123.23 | 25.21 | 0.17 | 0.27 |
MOPSO | 22.75 | 88.19 | 353.05 | 19.23 | 0.17 | 0.70 |
BM 3 (n = 5, K= 112) | ||||||
Algorithms | CT | FT | HV | IGD | NP | TOPSIS |
IHGA | 31,725.67 | 145,709.27 | 645,447,067.40 | 3316.29 | 0.33 | 1.00 |
NSGA-II | 34,648.00 | 163,890.60 | 336,390,076.40 | 4983.07 | 0.11 | 0.72 |
MOABC | 39,243.00 | 212,236.40 | 112,323,234.21 | 3947.08 | 0.11 | 0.14 |
MOEAD | 41,606.00 | 204,704.20 | 128,979,341.23 | 3947.08 | 0.11 | 0.09 |
MOGWO | 31,768.50 | 166,512.00 | 146,591,649.20 | 3319.22 | 0.22 | 0.77 |
MOPSO | 35,394.00 | 210,167.40 | 212,852,628.00 | 6321.21 | 0.11 | 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rauf, M.; Mumtaz, J.; Adeel, R.; Minhas, K.A.; Usman, M. An Efficient Q-Learning-Based Multi-Objective Intelligent Hybrid Genetic Algorithm for Mixed-Model Assembly Line Efficiency. Symmetry 2025, 17, 811. https://doi.org/10.3390/sym17060811
Rauf M, Mumtaz J, Adeel R, Minhas KA, Usman M. An Efficient Q-Learning-Based Multi-Objective Intelligent Hybrid Genetic Algorithm for Mixed-Model Assembly Line Efficiency. Symmetry. 2025; 17(6):811. https://doi.org/10.3390/sym17060811
Chicago/Turabian StyleRauf, Mudassar, Jabir Mumtaz, Rabia Adeel, Kaynat Afzal Minhas, and Muhammad Usman. 2025. "An Efficient Q-Learning-Based Multi-Objective Intelligent Hybrid Genetic Algorithm for Mixed-Model Assembly Line Efficiency" Symmetry 17, no. 6: 811. https://doi.org/10.3390/sym17060811
APA StyleRauf, M., Mumtaz, J., Adeel, R., Minhas, K. A., & Usman, M. (2025). An Efficient Q-Learning-Based Multi-Objective Intelligent Hybrid Genetic Algorithm for Mixed-Model Assembly Line Efficiency. Symmetry, 17(6), 811. https://doi.org/10.3390/sym17060811