Underwater-Image Enhancement Based on Maximum Information-Channel Correction and Edge-Preserving Filtering
Abstract
1. Introduction
- (1)
- We have developed a novel approach for UIE that demonstrates both efficiency and robustness. Numerous experiments have shown that our method is comparable to the latest UIE methods in qualitative and quantitative comparison, application testing, runtime, and generalization testing.
- (2)
- A maximum information channel for color correction is proposed. Specifically, we derive a reference channel from the principle of maximum information retention and utilize this reference channel to color-correct the input image. Compared with conventional techniques, our method eliminates the need for supplementary reference images while maintaining both efficiency and reliability.
- (3)
- An effective strategy for enhancing image contrast is proposed. In detail, we employ guided filtering to achieve local detail enhancement of color-corrected images while utilizing gamma transformation with varying parameter values to achieve a global contrast-enhancement effect.
- (4)
- An image-fusion technique based on side-window filtering is proposed. We utilize side-window filtering to decompose the pre-enhanced image sequence into LF and HF components. These components are then integrated using different rules to produce high-quality underwater images.
2. Preliminaries
2.1. Atmospheric Scattering Model
2.2. Side-Window Filtering
3. Proposed Method
3.1. Color Restoration of Underwater Images Based on Maximum Information Transfer
3.2. Acquisition of Global Contrast and Detailed Image Enhancement
3.2.1. Acquisition of Exposure Image Sequence via Gamma-Corrected Transformation
3.2.2. Obtaining Detail-Enhanced Images Based on Guided Filter
3.3. Multi-Scale Fusion
3.3.1. Enhanced Image Decomposition
3.3.2. Weighting-Map Construction
3.3.3. Integration Process
Algorithm 1. UIE based on maximum information-channel correction and edge-preserving filtering |
Input: Original underwater image, . |
|
Output: The enhanced underwater image, . |
4. Results
4.1. Setup of the Experiment
4.2. Experimental Analyses
4.2.1. Qualitative Comparison
4.2.2. Quantitative Comparison
4.2.3. Application Testing
4.2.4. Complexity Analysis
4.2.5. Limitation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, W.; Pan, X.; Xie, X.; Li, L.; Wang, Z.; Han, C. Color correction and adaptive contrast enhancement for underwater image enhancement. Comput. Electr. Eng. 2021, 91, 106981. [Google Scholar] [CrossRef]
- Jiang, Q.; Gu, Y.; Li, C.; Cong, R.; Shao, F. Underwater image enhancement quality evaluation: Benchmark dataset and objective metric. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 5959–5974. [Google Scholar] [CrossRef]
- Fu, X.; Cao, X. Underwater image enhancement with global-local networks and compressed-histogram equalization. Signal Process. Image Commun. 2020, 86, 115892. [Google Scholar] [CrossRef]
- Trucco, E.; Olmos-Antillon, A.T. Self-tuning underwater image restoration. IEEE J. Ocean. Eng. 2006, 31, 511–519. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 1956–1963. [Google Scholar]
- Chiang, J.Y.; Chen, Y.-C. Underwater image enhancement by wavelength compensation and dehazing. IEEE Trans. Image Process. 2012, 21, 1756–1769. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Chau, L.-P. Underwater image restoration based on contrast enhancement. In Proceedings of the IEEE International Conference on Digital Signal Processing, Beijing, China, 16–18 October 2016; pp. 584–588. [Google Scholar]
- Li, C.; Guo, J.; Guo, C.; Cong, R.; Gong, J. A hybrid method for underwater image correction. Pattern Recognit. Lett. 2017, 94, 62–67. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Chau, L.-P. Single underwater image restoration using adaptive attenuation-curve prior. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 992–1002. [Google Scholar] [CrossRef]
- Zhuang, P.; Wu, J.; Porikli, F.; Li, C. Underwater image enhancement with hyper-laplacian reflectance priors. IEEE Trans. Image Process. 2022, 31, 5442–5455. [Google Scholar] [CrossRef]
- Hou, G.; Li, N.; Zhuang, P.; Li, K.; Sun, H.; Li, C. Non-uniform illumination underwater image restoration via illumination channel sparsity prior. IEEE Trans. Circuits Syst. Video Technol. 2024, 34, 799–814. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Chen, Y.; Li, Y.; Tang, H.; Fu, X. Underwater image restoration via spatially adaptive polarization imaging and color correction. Knowl.-Based Syst. 2024, 305, 112651. [Google Scholar] [CrossRef]
- Liang, Z.; Zhang, W.; Ruan, R.; Zhuang, P.; Xie, X.; Li, C. Underwater image quality improvement via color. IEEE Trans. Circuits Syst. Video Technol. 2024, 34, 1726–1742. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, Q.; Hou, G. Underwater image restoration via adaptive color correction and dehazing. Appl. Opt. 2024, 63, 2728–2736. [Google Scholar] [CrossRef]
- Yu, Q.; Hou, G.; Zhang, W.; Huang, B.; Pan, Z. Contour and texture preservation underwater image restoration via Low-rank regularizations. Expert Syst. Appl. 2025, 262, 125549. [Google Scholar] [CrossRef]
- Ghani, A.S.A.; Isa, N.A.M. Underwater image quality enhancement through Rayleigh-stretching and averaging image planes. Int. J. Nav. Archit. Ocean. Eng. 2014, 6, 840–866. [Google Scholar] [CrossRef]
- Huang, D.; Wang, Y.; Song, W.; Sequeira, J.; Mavromatis, S. Shallow-water image enhancement using relative global histogram stretching based on adaptive parameter acquisition. In MultiMedia Modeling; Springer International Publishing: Cham, Switzerland, 2018; Volume 10704, pp. 453–465. [Google Scholar]
- Peng, Y.-T.; Chen, Y.-R.; Chen, Z.; Wang, J.-H.; Huang, S.-C. Underwater image enhancement based on histogram-equalization approximation using physics-based dichromatic modeling. Sensors 2022, 22, 2168. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Zhuang, P.; Huang, Y.; Liao, Y.; Zhang, X.-P.; Ding, X. A retinex-based enhancing approach for single underwater image. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 4572–4576. [Google Scholar] [CrossRef]
- Ghani, A.S.A.; Isa, N.A.M. Enhancement of low quality underwater image through integrated color model and local contrast correction. Appl. Soft Comput. 2015, 37, 332–344. [Google Scholar] [CrossRef]
- Zhuang, P.; Li, C.; Wu, J. Bayesian retinex underwater image enhancement. Eng. Appl. Artif. Intell. 2021, 101, 104171. [Google Scholar] [CrossRef]
- Ancuti, C.O.; Ancuti, C.; De Vleeschouwer, C.; Bekaert, P. Color balance and fusion for underwater image enhancement. IEEE Trans. Image Process. 2018, 27, 379–393. [Google Scholar] [CrossRef]
- Zhang, W.; Dong, L.; Pan, X.; Zhou, J.; Qin, L.; Xu, W. Single image defogging based on multi-channel convolutional MSRCR. IEEE Access 2019, 7, 72492–72504. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Y.; Li, C. Underwater image enhancement by attenuated color channel correction and detail preserved contrast enhancement. IEEE J. Ocean. Eng. 2022, 47, 718–735. [Google Scholar] [CrossRef]
- Hu, H.; Xu, S.; Zhao, Y.; Chen, H.; Yang, S.; Liu, H.; Zhai, J.; Li, X. Enhancing underwater image via color-cast correction and luminance fusion. IEEE J. Ocean. Eng. 2024, 49, 15–29. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, L.; Zhuang, P.; Li, G.; Pan, X.; Zhao, W.; Li, C. Underwater image enhancement via weighted wavelet visual perception fusion. IEEE Trans. Circuits Syst. Video Technol. 2024, 34, 2469–2483. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Q.; Lu, H.; Wang, J.; Liang, J. Underwater image enhancement via wavelet decomposition fusion of advantage contrast. IEEE Trans. Circuits Syst. Video Technol. 2025. [Google Scholar] [CrossRef]
- Zhou, J.; Gai, Q.; Zhang, D.; Lam, K.-M.; Zhang, W.; Fu, X. IACC: Cross-illumination awareness and color correction for underwater images under mixed natural and artificial lighting. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4201115. [Google Scholar] [CrossRef]
- Zhou, J.; Sun, J.; Li, C.; Jiang, Q.; Zhou, M.; Lam, K.-M.; Zhang, W.; Fu, X. HCLR-Net: Hybrid contrastive learning regularization with locally randomized perturbation for underwater image enhancement. Int. J. Comput. Vis. 2024, 132, 4132–4156. [Google Scholar] [CrossRef]
- Jiang, N.; Chen, W.; Lin, Y.; Zhao, T.; Lin, C.-W. Underwater image enhancement with lightweight cascaded network. IEEE Trans. Multimed. 2022, 24, 4301–4313. [Google Scholar] [CrossRef]
- Peng, L.; Zhu, C.; Bian, L. U-shape transformer for underwater image enhancement. IEEE Trans. Image Process. 2023, 32, 3066–3079. [Google Scholar] [CrossRef]
- Wen, J.; Cui, J.; Zhao, Z.; Yan, R.; Gao, Z.; Dou, L.; Chen, B.M. Syreanet: A physically guided underwater image enhancement framework integrating synthetic and real images. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; pp. 5177–5183. [Google Scholar]
- Jiang, Q.; Kang, Y.; Wang, Z.; Ren, W.; Li, C. Perception-driven deep underwater image enhancement without paired supervision. IEEE Trans. Multimed. 2024, 26, 4884–4897. [Google Scholar] [CrossRef]
- Ni, Z.; Yang, W.; Wang, S.; Ma, L.; Kwong, S. Towards unsupervised deep image enhancement with generative adversarial network. IEEE Trans. Image Process. 2020, 29, 9140–9151. [Google Scholar] [CrossRef]
- Lu, H.; Li, Y.; Uemura, T.; Kim, H.; Serikawa, S. Low illumination underwater light field images reconstruction using deep convolutional neural networks. Future Gener. Comput. Syst. 2018, 82, 142–148. [Google Scholar] [CrossRef]
- Li, C.; Anwar, S.; Porikli, F. Underwater scene prior inspired deep underwater image and video enhancement. Pattern Recognit. 2020, 98, 107038. [Google Scholar] [CrossRef]
- Yuan, G.; Yang, G.; Wang, J.; Liu, H.; Wang, W. Coarse-to-fine multilevel wavelet transform for underwater image enhancement. Opt. Precis. Eng. 2022, 30, 2939–2951. [Google Scholar] [CrossRef]
- Naik, A.; Swarnakar, A.; Mittal, K. Shallow-UWnet: Compressed model for underwater image enhancement (student abstract). Proc. AAAI Conf. Artif. Intell. 2021, 35, 15853–15854. [Google Scholar] [CrossRef]
- Ma, Z.; Oh, C. A wavelet-based dual-stream network for underwater image enhancement. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 23–27 May 2022; pp. 2769–2773. [Google Scholar]
- Tun, M.T.; Sugiura, Y.; Shimamura, T. Lightweight underwater image enhancement via impulse response of low-pass filter based attention network. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 27–30 October 2024; pp. 1697–1703. [Google Scholar]
- Zhang, D.; Zhou, J.; Guo, C.; Zhang, W.; Li, C. Synergistic multiscale detail refinement via intrinsic supervision for underwater image enhancement. Proc. AAAI Conf. Artif. Intell. 2024, 38, 7033–7041. [Google Scholar] [CrossRef]
- Farhadi Tolie, H.; Ren, J.; Elyan, E. DICAM: Deep inception and channel-wise attention modules for underwater image enhancement. Neurocomputing 2024, 584, 127585. [Google Scholar] [CrossRef]
- Li, J.; Skinner, K.A.; Eustice, R.M.; Johnson-Roberson, M. Unsupervised generative network to enable real-time color correction of monocular underwater images. IEEE Robot. Autom. Lett. 2018, 3, 387–394. [Google Scholar] [CrossRef]
- Guo, Y.; Li, H.; Zhuang, P. Underwater image enhancement using a multiscale dense generative adversarial network. IEEE J. Ocean. Eng. 2020, 45, 862–870. [Google Scholar] [CrossRef]
- Liu, R.; Jiang, Z.; Yang, S.; Fan, X. Twin adversarial contrastive learning for underwater image enhancement and beyond. IEEE Trans. Image Process. 2022, 31, 4922–4936. [Google Scholar] [CrossRef]
- Chao, D.; Li, Z.; Zhu, W.; Li, H.; Zheng, B.; Zhang, Z.; Fu, W. AMSMC-UGAN: Adaptive multi-scale multi-color space underwater image enhancement with GAN-physics fusion. Mathematics 2024, 12, 1551. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, L.; Xu, M.; Yu, M.; Wang, K.; Lin, Y. Domain adaptation for underwater image enhancement. IEEE Trans. Image Process. 2023, 32, 1442–1457. [Google Scholar] [CrossRef]
- You, K.; Li, X.; Yi, P.; Zhang, Y.; Xu, J.; Ren, J.; Bai, H.; Ma, C. PIC-GAN: Symmetry-driven underwater image enhancement with partial instance normalisation and colour detail modulation. Symmetry 2025, 17, 201. [Google Scholar] [CrossRef]
- Li, C.; Guo, C.; Ren, W.; Cong, R.; Hou, J.; Kwong, S.; Tao, D. An underwater image enhancement benchmark dataset and beyond. IEEE Trans. Image Process. 2019, 29, 4376–4389. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, J. Computer modeling and the design of optimal underwater imaging systems. IEEE J. Ocean. Eng. 1990, 15, 101–111. [Google Scholar] [CrossRef]
- Koschmieder, H. Theorie der horizontalen sichtweite. Beitr. Phys. Freien Atmos. 1924, 12, 171–181. [Google Scholar]
- Tomasi, C.; Manduchi, R. Bilateral filtering for gray and color images. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Bombay, India, 7 January 1998; pp. 839–846. [Google Scholar]
- Shen, X.; Zhou, C.; Xu, L.; Jia, J. Mutual-structure for joint filtering. Int. J. Comput. Vis. 2015, 125, 19–33. [Google Scholar] [CrossRef]
- Gong, Y.; Sbalzarini, I.F. Curvature filters efficiently reduce certain variational energies. IEEE Trans. Image Process. 2017, 26, 1786–1798. [Google Scholar] [CrossRef]
- Yin, H.; Gong, Y.; Qiu, G. Side window filtering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 8758–8766. [Google Scholar]
- Zhang, W.; Jin, S.; Zhuang, P.; Liang, Z.; Li, C. Underwater image enhancement via piecewise color correction and dual prior optimized contrast enhancement. IEEE Signal Process. Lett. 2023, 30, 229–233. [Google Scholar] [CrossRef]
- Buchsbaum, G. A spatial processor model for object color perception. J. Frankl. Inst. 1980, 310, 1–26. [Google Scholar] [CrossRef]
- Kang, Y.; Jiang, Q.; Li, C.; Ren, W.; Liu, H.; Wang, P. A perception-aware decomposition and fusion framework for underwater image enhancement. IEEE Trans. Circuits Syst. Video Technol. 2022, 33, 988–1002. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1397–1409. [Google Scholar] [CrossRef]
- Jha, M.; Bhandari, A.K. CBLA: Color-balanced locally adjustable underwater image enhancement. IEEE Trans. Instrum. Meas. 2024, 73, 5020911. [Google Scholar] [CrossRef]
- Saleem, A.; Paheding, S.; Rawashdeh, N.; Awad, A.; Kaur, N. A non-reference evaluation of underwater image enhancement methods using a new underwater image dataset. IEEE Access 2023, 11, 10412–10428. [Google Scholar] [CrossRef]
- Marques, T.P.; Albu, A.B. L2UWE: A framework for the efficient enhancement of low-light underwater image using local contrast and multi-scale fusion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 14–19 June 2020; pp. 2286–2295. [Google Scholar]
- Liu, R.; Fan, X.; Zhu, M.; Hou, M.; Luo, Z. Real-world underwater enhancement: Challenges, benchmarks and solutions under natural light. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 4861–4875. [Google Scholar] [CrossRef]
- Chang, L.; Song, H.; Li, M.; Xiang, M. UIDEF: A real-world underwater image dataset and a color-contrast complementary image enhancement framework. ISPRS J. Photogramm. Remote Sens. 2023, 196, 415–428. [Google Scholar] [CrossRef]
- Foi, A.; Katkovnik, V.; Egiazarian, K. Pointwise shape adaptive DCT for high quality denoising and deblocking of grayscale and color images. IEEE Trans. Image Process. 2007, 16, 1395–1411. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Panetta, K.; Gao, C.; Agaian, S. Human-visual-system-inspired underwater image quality measures. IEEE J. Ocean. Eng. 2016, 41, 541–551. [Google Scholar] [CrossRef]
- Gao, S.-B.; Zhang, M.; Zhao, Q.; Zhanga, X.-S.; Li, Y.-J. Underwater image enhancement using adaptive retinal mechanisms. IEEE Trans. Image Process. 2019, 28, 5580–5595. [Google Scholar] [CrossRef]
- Wang, Y.; Li, N.; Li, Z.; Gu, Z.; Zheng, H.; Zheng, B.; Sun, M. An imaging-inspired no-reference underwater color image quality assessment metric. Comput. Electr. Eng. 2017, 70, 904–913. [Google Scholar] [CrossRef]
- Zhang, W.; Zhuang, P.; Sun, H.H.; Li, G.; Kwong, S.; Li, C. Underwater image enhancement via minimal color loss and locally adaptive contrast enhancement. IEEE Trans. Image Process. 2022, 31, 3997–4010. [Google Scholar] [CrossRef]
- Yuan, J.; Cai, Z.; Cao, W. TEBCF: Real-world underwater image texture enhancement model based on blurriness and color fusion. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4204315. [Google Scholar] [CrossRef]
- Harris, C.; Stephens, M. A combined corner and edge detector. In Proceedings of the Alvey Vision Conference, Manchester, UK, 31 August–2 September 1988; Volume 15. [Google Scholar]
- Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the International Conference on Computer Vision (ICCV), Kerkyra, Greece, 20–27 September 1999; pp. 1150–1157. [Google Scholar]
- Coudène, Y. Entropy and information theory. In Ergodic Theory and Dynamical Systems; Springer: London, UK, 2016. [Google Scholar]
Datasets | Evaluation Indicators | RAW | BR | CBF | CBLA | EUICCCLF | HLRP | MCLLAC | PCDE | TEBCF | WWPF | Ours |
---|---|---|---|---|---|---|---|---|---|---|---|---|
BRUD | UCIQE↑ | 0.4771 | 0.5293 | 0.5081 | 0.6226 | 0.5286 | 0.6179 | 0.5490 | 0.5346 | 0.5986 | 0.5627 | 0.6525 |
UIQM↑ | 0.5608 | 1.5996 | 2.3498 | 1.8802 | 2.2973 | 0.8871 | 1.3528 | 1.6008 | 3.0276 | 2.1006 | 2.4853 | |
CCF↑ | 7.0239 | 8.9571 | 12.4251 | 32.5024 | 15.8290 | 30.7032 | 11.5647 | 9.6594 | 18.7826 | 14.8584 | 23.5303 | |
AG↑ | 0.4903 | 1.3282 | 2.1335 | 1.5617 | 2.3326 | 1.7720 | 1.2305 | 1.4690 | 3.5599 | 1.4802 | 1.8273 | |
OD | UCIQE↑ | 0.5448 | 0.5048 | 0.5429 | 0.5851 | 0.5626 | 0.5837 | 0.5736 | 0.5697 | 0.5826 | 0.5722 | 0.5857 |
UIQM↑ | 1.6521 | 2.7976 | 3.6059 | 2.8214 | 3.9658 | 1.9674 | 2.8909 | 3.1364 | 3.8627 | 3.2448 | 3.9371 | |
CCF↑ | 16.0485 | 12.4852 | 15.8014 | 37.9957 | 24.2443 | 33.2820 | 23.0568 | 17.6160 | 24.1926 | 22.3759 | 26.6672 | |
AG↑ | 2.0742 | 3.8000 | 4.2889 | 4.4963 | 7.1771 | 4.6306 | 5.0316 | 4.6067 | 7.1694 | 4.3705 | 5.9752 | |
RUIE | UCIQE↑ | 0.4426 | 0.5879 | 0.4967 | 0.6512 | 0.5849 | 0.6129 | 0.5798 | 0.6012 | 0.5992 | 0.5906 | 0.5982 |
UIQM↑ | 1.4014 | 4.7738 | 4.4384 | 3.6542 | 4.7768 | 4.4168 | 3.7840 | 4.1530 | 4.5404 | 4.2304 | 4.4431 | |
CCF↑ | 14.8171 | 29.9310 | 22.4360 | 67.0771 | 41.4597 | 45.4739 | 43.7170 | 40.8603 | 35.3210 | 40.5169 | 51.9562 | |
AG↑ | 3.8684 | 11.2836 | 7.1045 | 15.7547 | 18.1507 | 10.3605 | 14.6243 | 14.6483 | 14.1612 | 12.1179 | 19.0216 | |
SAUD | UCIQE↑ | 0.4936 | 0.5840 | 0.5389 | 0.6663 | 0.6178 | 0.6226 | 0.6007 | 0.5942 | 0.6162 | 0.6080 | 0.6165 |
UIQM↑ | 2.2963 | 4.5812 | 4.3738 | 3.9400 | 4.1509 | 3.8113 | 3.6067 | 4.1854 | 4.3300 | 3.7913 | 4.2164 | |
CCF↑ | 18.2524 | 27.8821 | 22.0191 | 62.1944 | 41.0468 | 43.9144 | 40.2121 | 34.7226 | 32.0605 | 38.1954 | 47.4861 | |
AG↑ | 4.4179 | 10.2349 | 7.0800 | 13.0537 | 16.1383 | 9.1150 | 14.0151 | 11.8745 | 12.3647 | 11.2709 | 17.5946 | |
UIDEF | UCIQE↑ | 0.4716 | 0.5755 | 0.5162 | 0.6561 | 0.6017 | 0.6690 | 0.5887 | 0.5774 | 0.6128 | 0.5982 | 0.6137 |
UIQM↑ | 0.8966 | 3.6178 | 3.5155 | 3.1145 | 3.7646 | 2.3918 | 2.8769 | 3.6624 | 3.8275 | 3.1984 | 3.5438 | |
CCF↑ | 13.2506 | 21.4098 | 17.6090 | 54.0158 | 31.7678 | 54.8675 | 28.7093 | 24.7086 | 28.9761 | 29.3680 | 35.0384 | |
AG↑ | 2.1640 | 5.8809 | 4.2782 | 6.9314 | 8.6566 | 7.0359 | 6.9952 | 6.4011 | 8.6170 | 6.2606 | 8.9121 | |
UIEB | UCIQE↑ | 0.5202 | 0.5888 | 0.5542 | 0.6709 | 0.6209 | 0.6387 | 0.6059 | 0.6107 | 0.6230 | 0.6146 | 0.6258 |
UIQM↑ | 1.9872 | 4.4717 | 4.2675 | 4.0843 | 4.1072 | 3.5465 | 3.5115 | 4.4360 | 3.9668 | 3.6801 | 4.0857 | |
CCF↑ | 20.7391 | 28.7898 | 22.8915 | 61.1990 | 41.2880 | 47.1944 | 41.6458 | 37.0206 | 31.6361 | 39.0492 | 48.7332 | |
AG↑ | 4.3722 | 9.6317 | 6.6850 | 12.3722 | 15.2100 | 9.0808 | 13.0143 | 11.2251 | 11.2649 | 10.7014 | 16.2836 | |
PSNR↑ | 24.3871 | 29.7296 | 33.6080 | 27.9169 | 28.6511 | 29.5428 | 29.5392 | 29.6949 | 32.0655 | 29.8646 | 33.0964 | |
SSIM↑ | 0.5232 | 0.6596 | 0.6152 | 0.6578 | 0.6633 | 0.6984 | 0.7010 | 0.5910 | 0.7385 | 0.7586 | 0.7430 |
Methods | BR | CBF | CBLA | EUICCCLF | HLPR | MCLLAC | PCDE | TEBCF | WWPF | Ours |
---|---|---|---|---|---|---|---|---|---|---|
Average running time (s) | 0.70 | 0.64 | 0.06 | 0.18 | 0.004 | 0.06 | 0.38 | 1.63 | 0.50 | 0.24 |
Methods | BR | CBF | CBLA | EUICCCLF | HLPR | MCLLAC | PCDE | TEBCF | WWPF | Ours |
---|---|---|---|---|---|---|---|---|---|---|
Average running time (s) | 2.90 | 2.08 | 0.43 | 0.49 | 0.03 | 0.54 | 2.54 | 12.79 | 1.91 | 1.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Xu, J.; He, S.; Chen, Y.; Zhang, X.; Shu, H.; Qi, P. Underwater-Image Enhancement Based on Maximum Information-Channel Correction and Edge-Preserving Filtering. Symmetry 2025, 17, 725. https://doi.org/10.3390/sym17050725
Liu W, Xu J, He S, Chen Y, Zhang X, Shu H, Qi P. Underwater-Image Enhancement Based on Maximum Information-Channel Correction and Edge-Preserving Filtering. Symmetry. 2025; 17(5):725. https://doi.org/10.3390/sym17050725
Chicago/Turabian StyleLiu, Wei, Jingxuan Xu, Siying He, Yongzhen Chen, Xinyi Zhang, Hong Shu, and Ping Qi. 2025. "Underwater-Image Enhancement Based on Maximum Information-Channel Correction and Edge-Preserving Filtering" Symmetry 17, no. 5: 725. https://doi.org/10.3390/sym17050725
APA StyleLiu, W., Xu, J., He, S., Chen, Y., Zhang, X., Shu, H., & Qi, P. (2025). Underwater-Image Enhancement Based on Maximum Information-Channel Correction and Edge-Preserving Filtering. Symmetry, 17(5), 725. https://doi.org/10.3390/sym17050725