Next Article in Journal
A Symmetry-Based Computational Framework for Motor Skill Optimization: Integrating Screw Theory and Ecological Perception
Previous Article in Journal
Sensorless Control of Doubly Fed Induction Machines Using Only Rotor-Side Variables
Previous Article in Special Issue
Some New Inequalities for the Gamma and Polygamma Functions
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Overview of Six Number/Polynomial Sequences Defined by Quadratic Recurrence Relations

1
School of Mathematics and Statistics, Zhoukou Normal University, Zhoukou 466001, China
2
Independent Researcher, Via Dalmazio Birago 9/E, 73100 Lecce, Italy
*
Author to whom correspondence should be addressed.
Symmetry 2025, 17(5), 714; https://doi.org/10.3390/sym17050714
Submission received: 4 April 2025 / Revised: 28 April 2025 / Accepted: 5 May 2025 / Published: 7 May 2025

Abstract

:
Six well-known sequences (Fibonacci and Lucas numbers, Pell and Pell–Lucas polynomials, and Chebyshev polynomials) are characterized by quadratic linear recurrence relations. They are unified and reviewed under a common framework. Several useful properties (such as Binet-form expressions, Cassini identities, and Catalan formulae) and remarkable results concerning power sums, ordinary convolutions, and binomial convolutions are presented by employing the symmetric feature, series rearrangements, and the generating function approach. Most of the classical results concerning these six number/polynomial sequences are recorded as consequences.

1. Introduction and Outline

Numerous sequences satisfying linear difference equations have been described in the literature (cf. [1]). By resolving a linear recurrence relation of order two, we introduce two parametric sequences Φ n ( u , v ) and Ψ n ( u , v ) . They will provide a common framework for unifying six well-known number/polynomial sequences.

1.1. Quadratic Recurrence Relation

We shall examine the sequence Λ n defined by the quadratic recurrence relation
Λ n + 1 = 2 u Λ n + v Λ n 1 with initial values Λ 0 = 2 a and Λ 1 = c ,
where a , c , u , and v are four complex numbers subject to Δ = u 2 + v 0 . By manipulating the formal power series
G ( y ) : = n = 0 Λ n y n = 2 a + c y + n = 1 Λ n + 1 y n + 1 = 2 a + c y + n = 1 2 u Λ n + v Λ n 1 y n + 1 = 2 a + c y + 2 u y G ( y ) 2 a + v y 2 G ( y ) ,
we derive the rational generating function (cf. [2,3])
G ( y ) = n = 0 Λ n y n = 2 a 4 a u y + c y 1 2 u y v y 2 .
Applying the partial fraction decomposition
G ( y ) = c 2 a ( u Δ ) 2 Δ { 1 y ( u + Δ ) } c 2 a ( u + Δ ) 2 Δ { 1 y ( u Δ ) }
and then expanding into the power series, we derive the explicit formula
Λ n = c 2 a ( u Δ ) 2 Δ u + Δ n c 2 a ( u + Δ ) 2 Δ u Δ n .
In particular, we have
a = 0 Λ n c 2 Δ u + Δ n c 2 Δ u Δ n , c = 2 a u Λ n a u + Δ n + a u Δ n .

1.2. Sequences Φ n ( u , v ) and Ψ n ( u , v )

For brevity, we define
α : = α ( u , v ) = u + u 2 + v γ : = γ ( u , v ) = u u 2 + v } with α γ = v and α ± γ = 2 u , + ; 2 Δ , .
By dropping the constants a and c from Λ n , we introduce, for n Z , two sequences:
Φ n ( u , v ) = ( u + Δ ) n ( u Δ ) n 2 Δ = α n ( u , v ) γ n ( u , v ) α ( u , v ) γ ( u , v ) ,
Ψ n ( u , v ) = ( u + Δ ) n + ( u Δ ) n = α n ( u , v ) + γ n ( u , v ) .
These two sequences satisfy the common recurrence relation, but with different initial values
Φ n + 1 = 2 u Φ n + v Φ n 1 : Φ ( 0 ) = 0 , Φ ( 1 ) = 1 ;
Ψ n + 1 = 2 u Ψ n + v Ψ n 1 : Ψ ( 0 ) = 2 , Ψ ( 1 ) = 2 u .
Their ordinary and exponential generating functions are as follows:
n = 0 y n Φ n ( u , v ) = y 1 2 u y v y 2 , n = 0 y n Ψ n ( u , v ) = 2 2 u y 1 2 u y v y 2 ;
n = 0 y n n ! Φ n ( u , v ) = e y α e y γ 2 u 2 + v , n = 0 y n n ! Ψ n ( u , v ) = e y α + e y γ .

1.3. Six Number/Polynomial Sequences

These parametric sequences Φ n ( u , v ) and Ψ n ( u , v ) are remarkable because they unify the following well-known sequences:
uv Φ n ( u , v ) Ψ n ( u , v )
1 2 1Fibonacci fumber F n Lucas number L n
x1Pell polynomial P n ( x ) Pell–Lucas polynomial Q n ( x )
x 1 Chebyshev polynomial U n 1 ( x ) Chebyshev polynomial 2 T n ( x )
These sequences appear frequently in combinatorics, number theory, and special functions, and can explicitly be expressed as follows:
  • Fibonacci and Lucas numbers (cf. Koshy [4] and [5], A000045 and A000032):
    F n = α ¯ n γ ¯ n α ¯ γ ¯ and L n = α ¯ n + γ ¯ n with α ¯ , γ ¯ = 1 ± 5 2 .
  • Pell and Pell–Lucas polynomials (cf. [6]):
    P n = α ^ n γ ^ n α γ and Q n = α ^ n + γ ^ n with α ^ , γ ^ = x ± 1 + x 2 .
  • Chebyshev polynomials of the first and second kinds (cf. [7]):
    T n = α ˜ n + γ ˜ n 2 and U n = α ˜ n + 1 γ ˜ n + 1 α ˜ γ ˜ with α ˜ , γ ˜ = x ± x 2 1 .
There is a long history as well as vast literature concerning these six sequences (for example, [4,6,7]), which have a wide range of applications in mathematics, physics, computer science, and applied sciences:
  • Fibonacci and Lucas numbers occur frequently in mathematics (number theory and primality testing), algorithmic design and analysis in computer sciences, coding theory, recursive methods, and the recognition of regular patterns existing in nature;
  • Pell and Pell–Lucas polynomials are important in number theory and Diophantine analysis, recursive constructions, and continued fractions;
  • Chebyshev polynomials play fundamental roles in approximation theory and numerical analysis, Fourier series, and special functions.
The aim of this paper is to present a comprehensive overview of them under the common framework of the { Φ n , Ψ n } sequences. As preliminaries, some basic properties will be given in the next section. Then, in Section 3, a number of finite sums and identities will be shown. Closed formulae regarding binomial sums will be derived in Section 4. Finally, we will briefly discuss further prospects.
Each class of summation formulae concerning the { Φ n , Ψ n } sequences will be followed by their corresponding formulae concerning Fibonacci and Lucas numbers, Pell and Pell–Lucas polynomials, and Chebyshev polynomials (of the first and second kinds). Despite attempts to provide a systematic treatment, it would be impossible to cover all aspects of these six sequences due to the enormous quantity of publications addressing them. To limit the length of the article, we have carefully selected and classified the results that we will present, including several new equations, even though it is not our primary concern. The authors hope that this compendium may serve as a reference source for readers in their further investigations.

2. Basic Properties and Preliminary Results

First of all, by making use of the Binet-form expressions (1) and (2), we deduce the two fundamental relations between Φ n ( u , v ) and Ψ n ( u , v ) :
Φ n + 1 ( u , v ) + v Φ n 1 ( u , v ) = Ψ n ( u , v ) , Ψ n + 1 ( u , v ) + v Ψ n 1 ( u , v ) = 4 Δ 2 Φ n ( u , v ) .
They are common generalizations of the following three pairs of well-known equations:
F n + 1 + F n 1 = L n , L n + 1 + L n 1 = 5 F n ; P n + 1 ( x ) + P n 1 ( x ) = Q n ( x ) , Q n + 1 ( x ) + Q n 1 ( x ) = 4 ( 1 + x 2 ) P n ( x ) ; U n + 1 ( x ) U n 1 ( x ) = 2 T n + 1 ( x ) , T n + 1 ( x ) T n 1 ( x ) = 2 ( x 2 1 ) U n 1 ( x ) .
Then, by manipulating (1) and (2), we can, without difficulty, show further properties of Φ n ( u , v ) and Ψ n ( u , v ) , that are highlighted in three theorems.

2.1. Cassini-like Formulae

Theorem 1 
( m , n Z ).
( a ) Φ m + n Φ m n Φ m 2 = ( v ) m n Φ n 2 , ( b ) Ψ m + n Ψ m n Ψ m 2 = 4 Δ 2 ( v ) m n Φ n 2 .
This theorem unifies the results below for the six number/polynomial sequences in question:
  • Fibonacci and Lucas numbers ( m , n Z ):
    F m + n F m n F m 2 = ( 1 ) m n + 1 F n 2 , L m + n L m n L m 2 = 5 ( 1 ) m n F n 2 .
  • Pell and Pell–Lucas polynomials ( m , n Z ):
    P m + n ( x ) P m n ( x ) P m 2 ( x ) = ( 1 ) m n + 1 P n 2 ( x ) , Q m + n ( x ) Q m n ( x ) Q m 2 ( x ) = 4 ( 1 ) m n ( 1 + x 2 ) P n 2 ( x ) .
  • Chebyshev polynomials ( m , n Z ):
    U m + n ( x ) U m n ( x ) U m 2 ( x ) = U n 1 2 ( x ) , T m + n ( x ) T m n ( x ) T m 2 ( x ) = ( x 2 1 ) U n 1 2 ( x ) .

2.2. Catalan-like Identities

Theorem 2 
( m , n Z ).
( a ) Φ m + n + v n Φ m n = Φ m Ψ n , even n ; Φ n Ψ m , odd n . ( b ) Φ m + n v n Φ m n = Φ n Ψ m , even n ; Φ m Ψ n , odd n . ( c ) Ψ m + n + v n Ψ m n = Ψ m Ψ n , even n ; 4 Δ 2 Φ m Φ n , odd n . ( d ) Ψ m + n v n Ψ m n = 4 Δ 2 Φ m Φ n , even n ; Ψ m Ψ n , odd n .
They are common generalizations of well-known results in two variables { u , v } :
  • Fibonacci and Lucas numbers ( m , n Z ):
    F m + n + F m n = F m L n , even n ; F n L m , odd n . F m + n F m n = F n L m , even n ; F m L n , odd n . L m + n + L m n = L m L n , even n ; 5 F m F n , odd n . L m + n L m n = 5 F m F n , even n ; L m L n , odd n .
  • Pell and Pell–Lucas polynomials ( m , n Z ):
    P m + n ( x ) + P m n ( x ) = P m ( x ) Q n ( x ) , even n ; P n ( x ) Q m ( x ) , odd n . P m + n ( x ) P m n ( x ) = P n ( x ) Q m ( x ) , even n ; P m ( x ) Q n ( x ) , odd n . Q m + n ( x ) + Q m n ( x ) = Q m ( x ) Q n ( x ) , even n ; 4 ( 1 + x 2 ) P m ( x ) P n ( x ) , odd n . Q m + n ( x ) Q m n ( x ) = 4 ( 1 + x 2 ) P m ( x ) P n ( x ) , even n ; Q m ( x ) Q n ( x ) , odd n .
  • Chebyshev polynomials ( m , n Z ):
    U m + n ( x ) + ( 1 ) n U m n ( x ) = 2 U m ( x ) T n ( x ) , even n ; 2 U n 1 ( x ) T m + 1 ( x ) , odd n . U m + n ( x ) ( 1 ) n U m n ( x ) = 2 U n 1 ( x ) T m + 1 ( x ) , even n ; 2 U m ( x ) T n ( x ) , odd n . T m + n ( x ) + ( 1 ) n T m n ( x ) = 2 T m ( x ) T n ( x ) , even n ; 2 ( x 2 1 ) U m 1 ( x ) U n 1 ( x ) , odd n . T m + n ( x ) ( 1 ) n T m n ( x ) = 2 ( x 2 1 ) U m 1 ( x ) U n 1 ( x ) , even n ; 2 T m ( x ) T n ( x ) , odd n .

2.3. Simple Linear Sums

Theorem 3 
( n N ).
( a ) k = 1 n v n k Φ k = Φ n + Φ n + 1 v n 1 + 2 u v , ( d ) k = 1 n v n k Ψ k = Ψ n + Ψ n + 1 2 v n 2 u v n 1 + 2 u v , ( b ) k = 1 n v n k Φ 2 k = Φ 2 n + 1 v n 2 u , ( e ) k = 1 n v n k Ψ 2 k = Ψ 2 n + 1 2 u v n 2 u , ( c ) k = 1 n v n k Φ 2 k 1 = Φ 2 n 2 u ; ( f ) k = 1 n v n k Ψ 2 k 1 = Ψ 2 n 2 v n 2 u .
Proof. 
As an example, we illustrate below how to confirm Formula (c) by means of the Binet Formula (1). The remaining proofs can be carried out similarly.
k = 1 n v n k Φ 2 k 1 = k = 1 n v n k α 2 k 1 γ 2 k 1 α γ = α v n 1 ( 1 α 2 n / v n ) ( α γ ) ( 1 α 2 / v ) γ v n 1 ( 1 γ 2 n / v n ) ( α γ ) ( 1 γ 2 / v ) = v n ( 1 γ 2 n / v n ) ( α γ ) ( α + γ ) v n ( 1 α 2 n / v n ) ( α γ ) ( α + γ ) = α 2 n γ 2 n ( α γ ) ( α + γ ) = Φ 2 n α + γ = Φ 2 n 2 u .
They contain the following finite sums as special cases:
  • Fibonacci and Lucas numbers ( n N ):
    k = 1 n F k = F n + 2 1 , k = 1 n L k = L n + 2 3 , k = 1 n F 2 k = F 2 n + 1 1 , k = 1 n L 2 k = L 2 n + 1 1 , k = 1 n F 2 k 1 = F 2 n ; k = 1 n L 2 k 1 = L 2 n 2 .
  • Pell and Pell–Lucas polynomials ( n N ):
    k = 1 n P k ( x ) = P n ( x ) + P n + 1 ( x ) 1 2 x , k = 1 n Q k ( x ) = Q n ( x ) + Q n + 1 ( x ) 2 x 2 2 x , k = 1 n P 2 k ( x ) = P 2 n + 1 ( x ) 1 2 x , k = 1 n Q 2 k ( x ) = Q 2 n + 1 ( x ) 2 x 2 x , k = 1 n P 2 k 1 ( x ) = P 2 n ( x ) 2 x ; k = 1 n Q 2 k 1 ( x ) = Q 2 n ( x ) 2 2 x .
  • Chebyshev polynomials ( n N ):
    k = 0 n ( 1 ) n k U k ( x ) = U n ( x ) + U n + 1 ( x ) + ( 1 ) n 2 + 2 x , k = 1 n ( 1 ) n k T k ( x ) = T n ( x ) + T n + 1 ( x ) 2 + 2 x ( 1 ) n 2 , k = 0 n ( 1 ) n k U 2 k ( x ) = U 2 n + 1 ( x ) 2 x , k = 1 n ( 1 ) n k T 2 k ( x ) = T 2 n + 1 ( x ) ( 1 ) n x 2 x , k = 0 n ( 1 ) n k U 2 k 1 ( x ) = U 2 n ( x ) ( 1 ) n 2 x ; k = 1 n ( 1 ) n k T 2 k 1 ( x ) = T 2 n ( x ) ( 1 ) n 2 x .

3. Power Sums and Convolution Identities

In this section, we will evaluate further finite sums of the squares and products of Φ n ( u , v ) and Ψ n ( u , v ) . They summarize numerous known identities of the six number/polynomial sequences as particular cases.

3.1. Quadratic Sums

Theorem 4 
( n N ).
( a ) k = 0 n v n k Φ k 2 = Φ n Φ n + 1 2 u , ( b ) k = 0 n v n k Ψ k 2 = Ψ n Ψ n + 1 2 u + 2 v n ; ( c ) k = 0 n ( v ) n k Φ k 2 = Φ n + 1 Ψ n 4 Δ 2 n + 1 2 Δ 2 ( v ) n , ( d ) k = 0 n ( v ) n k Ψ k 2 = Φ n + 1 Ψ n + 2 ( n + 1 ) ( v ) n .
Proof. 
As an example, we give an induction proof of Formula (a). Recalling the recurrence relation (3), we have
Φ n Φ n + 1 = 2 u Φ n 2 + v Φ n Φ n 1 = 2 u ( Φ n 2 + v Φ n 1 2 ) + v 2 Φ n 1 Φ n 2 = 2 u ( Φ n 2 + v Φ n 1 2 + v 2 Φ n 2 2 ) + v 3 Φ n 2 Φ n 3 .
Iterating this process n times gives Formula (a). □
The corresponding formulae related to the six number/polynomial sequences are displayed as follows:
  • Fibonacci and Lucas numbers ( n N ):
    k = 0 n F k 2 = F n F n + 1 , k = 0 n ( 1 ) n k F k 2 = F n + 1 L n 5 2 ( n + 1 ) 5 ( 1 ) n , k = 0 n L k 2 = L n L n + 1 + 2 ; k = 0 n ( 1 ) n k L k 2 = F n + 1 L n + 2 ( n + 1 ) ( 1 ) n .
  • Pell and Pell–Lucas polynomials ( n N ):
    k = 0 n P k 2 ( x ) = P n ( x ) P n + 1 ( x ) 2 x , k = 0 n ( 1 ) n k P k 2 ( x ) = P n + 1 ( x ) Q n ( x ) 4 ( 1 + x 2 ) ( 1 ) n ( n + 1 ) 2 ( 1 + x 2 ) , k = 0 n Q k 2 ( x ) = Q n ( x ) Q n + 1 ( x ) 2 x + 2 ; k = 0 n ( 1 ) n k Q k 2 ( x ) = P n + 1 ( x ) Q n ( x ) + 2 ( n + 1 ) ( 1 ) n .
  • Chebyshev polynomials ( n N ):
    k = 0 n ( 1 ) n k U k 2 ( x ) = U n ( x ) U n + 1 ( x ) 2 x , k = 0 n ( 1 ) n k T k 2 ( x ) = T n ( x ) T n + 1 ( x ) 2 x + ( 1 ) n 2 , k = 0 n T k 2 ( x ) = U n ( x ) T n ( x ) 2 + n + 1 2 ; k = 0 n U k 2 ( x ) = U n + 1 ( x ) T n + 1 ( x ) 2 ( x 2 1 ) n + 2 2 ( x 2 1 ) .

3.2. Double Product Sums

By means of the generating functions in (5), it is almost routine to establish the following convolution identities.
Theorem 5 
( n N ).
( a ) k = 0 n Φ k Φ n k = ( n + 1 ) Ψ n 2 Φ n + 1 4 Δ 2 , ( b ) k = 0 n Φ k Ψ n k = ( n + 1 ) Φ n , ( c ) k = 0 n Ψ k Ψ n k = ( n + 1 ) Ψ n + 2 Φ n + 1 .
Proof. 
Let [ y k ] Ω ( y ) stand for the coefficient of y k in the formal power series Ω ( y ) , and D y for the derivative operator with respect to y. According to the generating function relations displayed in (5), the convolution sum in (b) can expressed as
k = 0 n Φ k Ψ n k = [ y n ] y ( 2 2 u y ) ( 1 2 u y v y 2 ) 2 = [ y n ] y 1 2 u y v y 2 + y D y y 1 2 u y v y 2 = Φ n + n Φ n ,
which confirms Formula (b). The proofs of the other identities in the theorem can be provided analogously, and the interested reader can work them out as exercises.□
Their particular cases are exhibited as follows:
  • Fibonacci and Lucas numbers ( n N ):
    k = 0 n F k F n k = ( n + 1 ) L n 2 F n + 1 5 , k = 0 n F k L n k = ( n + 1 ) F n , k = 0 n L k L n k = ( n + 1 ) L n + 2 F n + 1 .
  • Pell and Pell–Lucas polynomials ( n N ):
    k = 0 n P k ( x ) P n k ( x ) = ( n + 1 ) Q n ( x ) 2 P n + 1 ( x ) 4 ( 1 + x 2 ) , k = 0 n P k ( x ) Q n k ( x ) = ( n + 1 ) P n ( x ) , k = 0 n Q k ( x ) Q n k ( x ) = ( n + 1 ) Q n ( x ) + 2 P n + 1 ( x ) .
  • Chebyshev polynomials ( n N ):
    k = 0 n U k ( x ) U n k ( x ) = ( n + 3 ) T n + 2 ( x ) U n + 2 ( x ) 2 ( x 2 1 ) , k = 0 n U k ( x ) T n k ( x ) = n + 2 2 U n ( x ) , k = 0 n T k ( x ) T n k ( x ) = n + 1 2 T n ( x ) + U n ( x ) 2 .

3.3. Duplication Product Sums

Theorem 6 
( m Z , n N and δ = 0 , 1 ).
( a ) k = 0 n Φ m + 2 k Φ δ + 2 n 2 k = n + 1 4 Δ 2 Ψ m + 2 n + δ ( v ) δ 8 u Δ 2 Φ 2 n + 2 Ψ m δ , ( b ) k = 0 n Ψ m + 2 k Ψ δ + 2 n 2 k = ( n + 1 ) Ψ m + 2 n + δ + ( v ) δ 2 u Φ 2 n + 2 Ψ m δ , ( c ) k = 0 n Φ m + 2 k Ψ δ + 2 n 2 k = ( n + 1 ) Φ m + 2 n + δ + ( v ) δ 2 u Φ 2 n + 2 Φ m δ .
Proof. 
They can be proved by using the Binet formulae (1) and (2). For example, Formula (c) can be shown as follows:
k = 0 n Φ m + 2 k Ψ δ + 2 n 2 k = k = 0 n α m + 2 k γ m + 2 k α γ × α δ + 2 n 2 k + γ δ + 2 n 2 k = 1 α γ k = 0 n α m + 2 n + δ γ m + 2 n + δ + α m γ 2 n + δ α γ 2 k γ m α 2 n + δ γ α 2 k = ( n + 1 ) Φ m + 2 n + δ + α m γ δ γ m α δ α γ × α 2 n + 2 γ 2 n + 2 2 u ( α γ ) = ( n + 1 ) Φ m + 2 n + δ + ( v ) δ 2 u Φ 2 n + 2 Φ m δ .
  • Fibonacci and Lucas numbers ( m Z , n N and δ = 0 , 1 ):
    k = 0 n F m + 2 k F δ + 2 n 2 k = n + 1 5 L m + 2 n + δ ( 1 ) δ 5 F 2 n + 2 L m δ , k = 0 n L m + 2 k L δ + 2 n 2 k = ( n + 1 ) L m + 2 n + δ + ( 1 ) δ F 2 n + 2 L m δ , k = 0 n F m + 2 k L δ + 2 n 2 k = ( n + 1 ) F m + 2 n + δ + ( 1 ) δ F 2 n + 2 F m δ .
  • Pell and Pell–Lucas polynomials ( m Z , n N and δ = 0 , 1 ):
    k = 0 n P m + 2 k ( x ) P δ + 2 n 2 k ( x ) = ( n + 1 ) Q m + 2 n + δ ( x ) 4 ( 1 + x 2 ) ( 1 ) δ P 2 n + 2 ( x ) Q m δ ( x ) 8 x ( 1 + x 2 ) , k = 0 n Q m + 2 k ( x ) Q δ + 2 n 2 k ( x ) = ( n + 1 ) Q m + 2 n + δ ( x ) + ( 1 ) δ P 2 n + 2 ( x ) Q m δ ( x ) 2 x , k = 0 n P m + 2 k ( x ) Q δ + 2 n 2 k ( x ) = ( n + 1 ) P m + 2 n + δ ( x ) + ( 1 ) δ P 2 n + 2 ( x ) P m δ ( x ) 2 x .
  • Chebyshev polynomials ( m Z , n N and δ = 0 , 1 ):
    k = 0 n U m + 2 k ( x ) U δ + 2 n 2 k ( x ) = ( n + 1 ) T m + 2 n + 2 + δ ( x ) 2 ( x 2 1 ) U 2 n + 1 ( x ) T m δ ( x ) 4 x ( x 2 1 ) , k = 0 n T m + 2 k ( x ) T δ + 2 n 2 k ( x ) = ( n + 1 ) T m + 2 n + δ ( x ) 2 + U 2 n + 1 ( x ) T m δ ( x ) 4 x , k = 0 n U m + 2 k ( x ) T δ + 2 n 2 k ( x ) = ( n + 1 ) U m + 2 n + δ ( x ) 2 + U 2 n + 1 ( x ) U m δ ( x ) 4 x .

3.4. Triple Product Sums

Theorem 7 
( n N 0 ).
( a ) i + j + k = n Φ i Φ j Φ k = Φ n 4 Δ 2 n + 2 2 3 n Ψ n + 1 + 6 v Φ n 16 Δ 4 , ( b ) i + j + k = n Φ i Φ j Ψ k = Ψ n 4 Δ 2 n + 2 2 n + 2 4 Δ 2 Φ n + 1 , ( c ) i + j + k = n Φ i Ψ j Ψ k = Φ n n + 2 2 + n Ψ n + 1 + 2 v Φ n 4 Δ 2 , ( d ) i + j + k = n Ψ i Ψ j Ψ k = Ψ n n + 2 2 + 3 ( n + 2 ) Φ n + 1 .
Proof. 
As a sample proof, we show Formula (d) by means of recursive constructions. Applying Formula (c) and then (b) in Theorem 5, we can proceed with
i + j + k = n Ψ i Ψ j Ψ k = k = 0 n Ψ n k i + j = k Ψ i Ψ j = k = 0 n Ψ n k 2 Φ k + 1 + ( k + 1 ) Ψ k = 2 ( n + 2 ) Φ n + 1 + k = 0 n ( k + 1 ) Ψ k Ψ n k = 2 ( n + 2 ) Φ n + 1 + k = 0 n ( n k + 1 ) Ψ k Ψ n k k n k = 2 ( n + 2 ) Φ n + 1 + n + 2 2 k = 0 n Ψ k Ψ n k = Ψ n n + 2 2 + 3 ( n + 2 ) Φ n + 1 ,
where the last line follows again from Theorem 5(c). □
  • Fibonacci and Lucas numbers ( n N 0 ):
    i + j + k = n F i F j F k = n + 2 2 F n 5 3 n L n + 1 + 6 F n 25 , i + j + k = n F i F j L k = n + 2 2 L n 5 n + 2 5 F n + 1 , i + j + k = n F i L j L k = n + 2 2 F n + n L n + 1 + 2 F n 5 , i + j + k = n L i L j L k = n + 2 2 L n + 3 ( n + 2 ) F n + 1 .
  • Pell and Pell–Lucas polynomials ( n N 0 ):
    i + j + k = n P i ( x ) P j ( x ) P k ( x ) = n + 2 2 P n ( x ) 4 ( 1 + x 2 ) 3 n Q n + 1 ( x ) + 6 P n ( x ) 16 ( 1 + x 2 ) 2 , i + j + k = n P i ( x ) P j ( x ) Q k ( x ) = n + 2 2 Q n ( x ) 4 ( 1 + x 2 ) n + 2 4 ( 1 + x 2 ) P n + 1 ( x ) , i + j + k = n P i ( x ) Q j ( x ) Q k ( x ) = n + 2 2 P n ( x ) + n Q n + 1 ( x ) + 2 P n ( x ) 4 ( 1 + x 2 ) , i + j + k = n Q i ( x ) Q j ( x ) Q k ( x ) = n + 2 2 Q n ( x ) + 3 ( n + 2 ) P n + 1 ( x ) .
  • Chebyshev polynomials ( n N 0 ):
    i + j + k = n U i ( x ) U j ( x ) U k ( x ) = n + 5 2 U n + 2 ( x ) 4 ( x 2 1 ) 3 ( n + 3 ) T n + 4 ( x ) 3 U n + 2 ( x ) 8 ( x 2 1 ) 2 , i + j + k = n U i ( x ) U j ( x ) T k ( x ) = n + 4 2 T n + 2 ( x ) 4 ( x 2 1 ) n + 4 8 ( x 2 1 ) U n + 2 ( x ) , i + j + k = n U i ( x ) T j ( x ) T k ( x ) = n + 3 2 U n ( x ) 4 + ( n + 1 ) T n + 2 ( x ) U n ( x ) 8 ( x 2 1 ) , i + j + k = n T i ( x ) T j ( x ) T k ( x ) = n + 2 2 T n ( x ) 4 + 3 ( n + 2 ) 8 U n ( x ) .

4. Closed Formulae of Binomial Sums

In this section, we shall evaluate binomial sums weighted by the functions Φ n and/or Ψ n . This can mainly be accomplished by utilizing the binomial theorem and/or by manipulating the exponential generating functions displayed in (6). Since the proofs are carried out by the standard generating function approach (cf. Comtet [2] and Wilf [3]), we confine ourselves to offering one sample proof for each theorem without reproducing the full details.

4.1. Binomial Linear Sums

Theorem 8 
( m Z and n N 0 ).
( a ) k = 0 n v 2 u n k n k Φ m + k = Φ m + 2 n ( 2 u ) n , ( b ) k = 0 n v 2 u n k n k Ψ m + k = Ψ m + 2 n ( 2 u ) n ; ( c ) k = 0 n 2 u n k n k Φ m + k = v m Φ n m ( 1 ) m + n 1 , ( d ) k = 0 n 2 u n k n k Ψ m + k = v m Ψ n m ( 1 ) m + n .
Proof. 
By means of the binomial theorem, we can evaluate the sum in (a):
k = 0 n v 2 u n k n k Φ m + k = k = 0 n v 2 u n k n k α m + k γ m + k α γ = α m v 2 u + α n γ m v 2 u + γ n α γ = α m + 2 n γ m + 2 n ( 2 u ) n ( α γ ) = Φ m + 2 n ( 2 u ) n ,
where the last line is justified by
α 2 = 2 u α + v and γ 2 = 2 u γ + v .
This completes the proof for Formula (a). The remaining three formulae can be proved similarly.□
  • Fibonacci and Lucas numbers ( m Z and n N 0 ):
    k = 0 n n k F m + k = F m + 2 n , k = 0 n n k L m + k = L m + 2 n ; k = 0 n 1 n k n k F m + k = ( 1 ) m + n 1 F n m , k = 0 n 1 n k n k L m + k = ( 1 ) m + n L n m .
  • Pell and Pell–Lucas polynomials ( m Z and n N 0 ):
    k = 0 n 1 2 x n k n k P m + k ( x ) = P m + 2 n ( x ) ( 2 x ) n , k = 0 n 1 2 x n k n k Q m + k ( x ) = Q m + 2 n ( x ) ( 2 x ) n ; k = 0 n 2 x n k n k P m + k ( x ) = ( 1 ) m + n 1 P n m ( x ) , k = 0 n 2 x n k n k Q m + k ( x ) = ( 1 ) m + n Q n m ( x ) .
  • Chebyshev polynomials ( m Z and n N 0 ):
    k = 0 n 1 2 x n k n k U m + k ( x ) = U m + 2 n ( x ) ( 2 x ) n , k = 0 n 1 2 x n k n k T m + k ( x ) = T m + 2 n ( x ) ( 2 x ) n ; k = 0 n 2 x n k n k U m + k ( x ) = ( 1 ) n 1 U n m 2 ( x ) , k = 0 n 2 x n k n k T m + k ( x ) = ( 1 ) n T n m ( x ) .

4.2. Binomial Duplicate Sums

Theorem 9 
( m Z and n N 0 ).
( a ) k = 0 n ( v ) n k n k Φ m + 2 k = ( 2 u ) n Φ m + n , ( b ) k = 0 n ( v ) n k n k Ψ m + 2 k = ( 2 u ) n Ψ m + n ; ( c ) k = 0 n v n k n k Φ m + 2 k = Φ m + n 2 Δ n , even n ; Ψ m + n 2 Δ n 1 , odd n . ( d ) k = 0 n v n k n k Ψ m + 2 k = Ψ m + n 2 Δ n , even n ; Φ m + n 2 Δ n + 1 , odd n .
Proof. 
As an example, we present a proof below for Formula (b). The others can be proved analogously. In fact, we have
k = 0 n ( v ) n k n k Ψ m + 2 k = k = 0 n ( v ) n k n k α m + 2 k + γ m + 2 k = α m α 2 v n + γ m γ 2 v n = ( 2 u ) n α m + n + ( 2 u ) n γ m + n = ( 2 u ) n Ψ m + n ,
where we have made use of the equalities
α 2 v = 2 u α and γ 2 v = 2 u γ .
  • Fibonacci and Lucas numbers ( m Z and n N 0 ):
    k = 0 n ( 1 ) n k n k F m + 2 k = F m + n , k = 0 n ( 1 ) n k n k L m + 2 k = L m + n ; k = 0 n n k F m + 2 k = 5 n F m + n , even n ; 5 n 1 L m + n , odd n . k = 0 n n k L m + 2 k = 5 n L m + n , even n ; 5 n + 1 F m + n , odd n .
    The first two formulae were discovered by Carlitz (1967, cf. [4], page 163).
  • Pell and Pell–Lucas polynomials ( m Z and n N 0 ):
    k = 0 n ( 1 ) n k n k P m + 2 k ( x ) = ( 2 x ) n P m + n ( x ) , k = 0 n ( 1 ) n k n k Q m + 2 k ( x ) = ( 2 x ) n Q m + n ( x ) ; k = 0 n n k P m + 2 k ( x ) = P m + n ( x ) 2 1 + x 2 n , even n ; Q m + n ( x ) 2 1 + x 2 n 1 , odd n . k = 0 n n k Q m + 2 k ( x ) = Q m + n ( x ) 2 1 + x 2 n , even n ; P m + n ( x ) 2 1 + x 2 n + 1 , odd n .
  • Chebyshev polynomials ( m Z and n N 0 ):
    k = 0 n n k U m + 2 k ( x ) = ( 2 x ) n U m + n ( x ) , k = 0 n n k T m + 2 k ( x ) = ( 2 x ) n T m + n ( x ) ; k = 0 n ( 1 ) n k n k U m + 2 k ( x ) = U m + n ( x ) 2 x 2 1 n , even n ; 2 T m + n + 1 ( x ) 2 x 2 1 n 1 , odd n . k = 0 n ( 1 ) n k n k T m + 2 k ( x ) = T m + n ( x ) 2 x 2 1 n , even n ; 1 2 U m + n 1 ( x ) 2 x 2 1 n + 1 , odd n .

4.3. Binomial Quadruplicate Sums

Theorem 10 
( m Z and n N ).
( a ) k = 0 n v 2 m ( n k ) n k Φ 4 m k = Φ 2 m n Ψ 2 m n , ( b ) k = 0 n v 2 m ( n k ) n k Ψ 4 m k = Ψ 2 m n Ψ 2 m n ; ( c ) k = 0 n ( v 2 m ) n k n k Φ 4 m k = ( 2 Δ ) n Φ 2 m n Φ 2 m n , even n ; ( 2 Δ ) n 1 Ψ 2 m n Φ 2 m n , odd n . ( d ) k = 0 n ( v 2 m ) n k n k Ψ 4 m k = ( 2 Δ ) n Ψ 2 m n Φ 2 m n , even n ; ( 2 Δ ) n + 1 Φ 2 m n Φ 2 m n , odd n .
Proof. 
The summation formula in (c) can be validated as follows:
k = 0 n ( v 2 m ) n k n k Φ 4 m k = k = 0 n ( v 2 m ) n k n k α 4 m k γ 4 m k α γ = ( α 4 m v 2 m ) n ( γ 4 m v 2 m ) n α γ = α 2 m n ( α 2 m γ 2 m ) n γ 2 m n ( γ 2 m α 2 m ) n α γ = ( α 2 m γ 2 m ) n ( α 2 m n ( 1 ) n γ 2 m n ) α γ = ( 2 Δ ) n Φ 2 m n Φ 2 m n , even n ; ( 2 Δ ) n 1 Ψ 2 m n Φ 2 m n , odd n .
The other three identities can be proved similarly. □
  • Fibonacci and Lucas numbers ( m Z and n N ):
    k = 0 n n k F 4 m k = F 2 m n L 2 m n , k = 0 n n k L 4 m k = L 2 m n L 2 m n ; k = 0 n ( 1 ) n k n k F 4 m k = 5 n F 2 m n F 2 m n , even n ; 5 n 1 L 2 m n F 2 m n , odd n . k = 0 n ( 1 ) n k n k L 4 m k = 5 n L 2 m n F 2 m n , even n ; 5 n + 1 F 2 m n F 2 m n , odd n .
    The first formula was found by Hoggatt (1968; see Koshy [4], page 163).
  • Pell and Pell–Lucas polynomials ( m Z and n N ):
    k = 0 n n k P 4 m k ( x ) = P 2 m n ( x ) Q 2 m n ( x ) , k = 0 n n k Q 4 m k ( x ) = Q 2 m n ( x ) Q 2 m n ( x ) ; k = 0 n ( 1 ) n k n k P 4 m k ( x ) = ( 2 1 + x 2 ) n P 2 m n ( x ) P 2 m n ( x ) , even n ; ( 2 1 + x 2 ) n 1 Q 2 m n ( x ) P 2 m n ( x ) , odd n . k = 0 n ( 1 ) n k n k Q 4 m k ( x ) = ( 2 1 + x 2 ) n Q 2 m n ( x ) P 2 m n ( x ) , even n ; ( 2 1 + x 2 ) n + 1 P 2 m n ( x ) P 2 m n ( x ) , odd n .
  • Chebyshev polynomials ( m Z and n N ):
    k = 0 n n k U 4 m k ( x ) = 2 n U 2 m n ( x ) T 2 m n ( x ) , k = 0 n n k T 4 m k ( x ) = 2 n T 2 m n ( x ) T 2 m n ( x ) ; k = 0 n ( 1 ) n k n k U 4 m k ( x ) = 2 n × x 2 1 n U 2 m n ( x ) U 2 m 1 n ( x ) , even n ; x 2 1 n 1 T 2 m n + 1 ( x ) U 2 m 1 n ( x ) , odd n . k = 0 n ( 1 ) n k n k T 4 m k ( x ) = 2 n × x 2 1 n T 2 m n ( x ) U 2 m 1 n ( x ) , even n ; x 2 1 n + 1 U 2 m n 1 ( x ) U 2 m 1 n ( x ) , odd n .

4.4. Binomial Convolution Sums

Theorem 11 
( m Z and n N 0 ).
( a ) k = 0 n n k Φ m k Φ m n m k = 2 n 1 Ψ m n Ψ m n 2 Δ 2 , ( b ) k = 0 n n k Φ m k Ψ m n m k = 2 n Φ m n , ( c ) k = 0 n n k Ψ m k Ψ m n m k = 2 n Ψ m n + 2 Ψ m n .
Proof. 
Recalling (6), we have the exponential generating function
k = 0 y k k ! Φ m k = e y α m e y γ m 2 Δ .
According to the Cauchy product, the binomial sum in (a) can be expressed as
k = 0 n n k Φ m k Φ m n m k = n ! [ y n ] e y α m e y γ m 2 Δ 2 = n ! [ y n ] e 2 y α m + e 2 y γ m 2 e y α m + y γ m 4 Δ 2 = 2 n ( α m n + γ m n ) 2 ( α m + γ m ) n 4 Δ 2 } = 2 n 1 Ψ m n Ψ m n 2 Δ 2 .
This confirms Identity (a). Analogously, (b) and (c) can be proved.□
  • Fibonacci and Lucas numbers ( m Z and n N 0 ):
    k = 0 n n k F m k F m n m k = 2 n L m n 2 L m n 5 , k = 0 n n k F m k L m n m k = 2 n F m n , k = 0 n n k L m k L m n m k = 2 n L m n + 2 L m n .
  • Pell and Pell–Lucas polynomials ( m Z and n N 0 : [8,9]):
    k = 0 n n k P m k ( x ) P m n m k ( x ) = 2 n 1 Q m n ( x ) Q m n ( x ) 2 ( 1 + x 2 ) , k = 0 n n k P m k ( x ) Q m n m k ( x ) = 2 n P m n ( x ) , k = 0 n n k Q m k ( x ) Q m n m k ( x ) = 2 n Q m n ( x ) + 2 Q m n ( x ) .
  • Chebyshev polynomials ( m Z and n N 0 ):
    k = 0 n n k U m k ( x ) U m n m k ( x ) = 2 n 1 x 2 1 T m n + 2 ( x ) T m n ( x ) , k = 0 n n k U m k ( x ) T m n m k ( x ) = 2 n 1 U m n ( x ) + U m n ( x ) , k = 0 n n k T m k ( x ) T m n m k ( x ) = 2 n 1 T m n ( x ) + T m n ( x ) .

4.5. Alternating Convolution Sums

Theorem 12 
( m Z and n N ).
( a ) k = 0 n ( 1 ) k n k Φ m k Φ m n m k = Φ m n × 2 ( 2 Δ ) n 2 , even n ; 0 , odd n . ( b ) k = 0 n ( 1 ) k n k Ψ m k Ψ m n m k = Φ m n × 2 ( 2 Δ ) n , even n ; 0 , odd n . ( c ) k = 0 n ( 1 ) k n k Φ m k Ψ m n m k = Φ m n × 0 , even n ; 2 ( 2 Δ ) n 1 , even n .
Proof. 
This theorem can also be proved by the generating function method. We provide only (b) as an example because the others can be proved in exactly the same manner. In view of (6), the following generating functions hold:
k = 0 ( ± 1 ) k y k k ! Ψ m k = e ± y α m + e ± y γ m .
Then, the binomial sum in (b) can be evaluated in closed form as follows:
k = 0 n ( 1 ) k n k Ψ m k Ψ m n m k = n ! [ y n ] e y α m + e y γ m × e y α m + e y γ m = n ! [ y n ] 2 + e y α m y γ m + e y γ m y α m = α m γ m n ( 1 + ( 1 ) n ) = Φ m n × 2 ( 2 Δ ) n , even n ; 0 , odd n .
  • Fibonacci and Lucas numbers ( m Z and n N ):
    k = 0 n ( 1 ) k n k F m k F m n m k = 5 F m n × 2 5 , even n ; 0 , odd n . k = 0 n ( 1 ) k n k L m k L m n m k = 5 F m n × 2 , even n ; 0 , odd n . k = 0 n ( 1 ) k n k F m k L m n m k = 5 F m n × 0 , even n ; 2 5 , odd n .
  • Pell and Pell–Lucas polynomials ( m Z and n N : [10,11,12]):
    k = 0 n ( 1 ) k n k P m k ( x ) P m n m k ( x ) = P m n ( x ) × 2 ( 2 1 + x 2 ) n 2 , even n ; 0 , odd n . k = 0 n ( 1 ) k n k Q m k ( x ) Q m n m k ( x ) = P m n ( x ) × 2 ( 2 1 + x 2 ) n , even n ; 0 , odd n . k = 0 n ( 1 ) k n k P m k ( x ) Q m n m k ( x ) = P m n ( x ) × 0 , even n ; 2 ( 2 1 + x 2 ) n 1 , odd n .
  • Chebyshev polynomials ( m Z and n N ):
    k = 0 n ( 1 ) k n k U m k ( x ) U m n m k ( x ) = U m 1 n ( x ) × 2 ( 2 x 2 1 ) n 2 , even n ; 0 , odd n . k = 0 n ( 1 ) k n k T m k ( x ) T m n m k ( x ) = U m 1 n ( x ) × 1 2 ( 2 x 2 1 ) n , even n ; 0 , odd n . k = 0 n ( 1 ) k n k U m k ( x ) T m n m k ( x ) = U m 1 n ( x ) × 1 2 ( 2 x 2 1 ) n , even n ; x ( 2 x 2 1 ) n 1 , odd n .

4.6. Binomial Square Sums

Theorem 13 
( n N ).
( a ) k = 0 n v n k n k Φ k 2 = ( 2 Δ ) n 2 Ψ n , even n ; ( 2 Δ ) n 1 Φ n , odd n . ( b ) k = 0 n v n k n k Ψ k 2 = ( 2 Δ ) n Ψ n , even n ; ( 2 Δ ) n + 1 Φ n , odd n . ( c ) k = 0 n ( v ) n k n k Φ k 2 = ( 2 u ) n Ψ n 2 ( 2 v ) n 4 Δ 2 , ( d ) k = 0 n ( v ) n k n k Ψ k 2 = ( 2 u ) n Ψ n + 2 ( 2 v ) n .
Proof. 
As a sample proof, we demonstrate (a) by making use of the binomial theorem. Specifically, we have
k = 0 n v n k n k Φ k 2 = k = 0 n v n k n k α k γ k α γ 2 = k = 0 n v n k n k α 2 k + γ 2 k 2 ( v ) k ( 2 Δ ) 2 = ( α 2 + v ) n + ( γ 2 + v ) n ( 2 Δ ) 2 = α n ( α γ ) n + γ n ( γ α ) n ( 2 Δ ) 2 = ( α γ ) n α n + ( 1 ) n γ n ( 2 Δ ) 2 = ( 2 Δ ) n 2 Ψ n , even n ; ( 2 Δ ) n 1 Φ n , odd n .
  • Fibonacci and Lucas numbers ( n N ):
    k = 0 n n k F k 2 = 5 n 2 L n , even n ; 5 n 1 F n , odd n . k = 0 n n k L k 2 = 5 n L n , even n ; 5 n + 1 F n , odd n . k = 0 n ( 1 ) n k n k F k 2 = L n 2 ( 2 ) n 5 , k = 0 n ( 1 ) n k n k L k 2 = L n + 2 ( 2 ) n .
  • Pell and Pell–Lucas polynomials ( n N ):
    k = 0 n n k P k 2 ( x ) = ( 2 1 + x 2 ) n 2 Q n ( x ) , even n ; ( 2 1 + x 2 ) n 1 P n ( x ) , odd n . k = 0 n n k Q k 2 ( x ) = ( 2 1 + x 2 ) n Q n ( x ) , even n ; ( 2 1 + x 2 ) n + 1 P n ( x ) , odd n . k = 0 n ( 1 ) n k n k P k 2 ( x ) = ( 2 x ) n Q n ( x ) 2 ( 2 ) n 4 ( 1 + x 2 ) , k = 0 n ( 1 ) n k n k Q k 2 ( x ) = ( 2 x ) n Q n ( x ) + 2 ( 2 ) n .
  • Chebyshev polynomials ( n N ):
    k = 0 n n k U k 2 ( x ) = ( 2 x ) n T n + 2 ( x ) 2 n 2 ( x 2 1 ) , k = 0 n n k T k 2 ( x ) = ( 2 x ) n T n ( x ) 2 + 2 n 1 ; k = 0 n ( 1 ) n k n k U k 2 ( x ) = 2 ( 2 x 2 1 ) n 2 T n + 2 ( x ) , even n ; ( 2 x 2 1 ) n 1 U n + 1 ( x ) , odd n . k = 0 n ( 1 ) n k n k T k 2 ( x ) = ( 2 x 2 1 ) n T n ( x ) 2 , even n ; ( 2 x 2 1 ) n + 1 U n 1 ( x ) 4 , odd n .

4.7. Binomial Cubic Sums

Theorem 14 
( n N 0 ).
( a ) k = 0 n ( v ) 3 n 3 k n k Φ 2 k 3 = Ψ 3 n 4 Δ 2 Φ 3 n 3 ( 2 u v 2 ) n 4 Δ 2 Φ n , ( b ) k = 0 n ( v ) 3 n 3 k n k Ψ 2 k 3 = Ψ 3 n Ψ 3 n + 3 ( 2 u v 2 ) n Ψ n ; ( c ) k = 0 n v 3 n 3 k n k Φ 2 k 3 = ( 2 Δ ) n 2 Φ 3 n Φ 3 n 3 v 2 n Φ n , even n ; ( 2 Δ ) n 3 Φ 3 n Ψ 3 n 3 v 2 n Ψ n , odd n . ( d ) k = 0 n v 3 n 3 k n k Ψ 2 k 3 = ( 2 Δ ) n Φ 3 n Ψ 3 n + 3 v 2 n Ψ n , even n ; ( 2 Δ ) n + 1 Φ 3 n Φ 3 n + 3 v 2 n Φ n , odd n .
Proof. 
We give a proof of (b) as an example. The others can be proved analogously. In fact, the binomial sum in (b) can be manipulated and then evaluated as follows:
k = 0 n ( v ) 3 n 3 k n k Ψ 2 k 3 = k = 0 n ( v ) 3 n 3 k n k α 2 k + γ 2 k 3 = k = 0 n ( v ) 3 n 3 k n k α 6 k + γ 6 k + 3 ( v α ) 2 k + 3 ( v γ ) 2 k = α 6 v 3 n + γ 6 v 3 n + 3 v 2 n ( α 2 v ) n + 3 v 2 n ( γ 2 v ) n = α 3 n + γ 3 n α 3 + γ 3 n + 3 ( 2 u ) n v 2 n α n + γ n = Ψ 3 n Ψ 3 n + 3 ( 2 u v 2 ) n Ψ n .
  • Fibonacci and Lucas numbers ( n N 0 ):
    k = 0 n ( 1 ) n k n k F 2 k 3 = 1 5 L 3 n F 3 n 3 5 F n , k = 0 n ( 1 ) n k n k L 2 k 3 = L 3 n L 3 n + 3 L n ; k = 0 n n k F 2 k 3 = 5 n 2 F 3 n F 3 n 3 F n , even n ; 5 n 3 L 3 n F 3 n 3 L n , odd n . k = 0 n n k L 2 k 3 = 5 n F 3 n L 3 n + 3 L n , even n ; 5 n + 1 F 3 n F 3 n + 3 F n , odd n .
  • Pell and Pell–Lucas polynomials ( n N 0 ):
    k = 0 n ( 1 ) n k n k P 2 k 3 ( x ) = Q 3 n ( x ) 4 ( 1 + x 2 ) P 3 n ( x ) 3 ( 2 x ) n 4 ( 1 + x 2 ) P n ( x ) , k = 0 n ( 1 ) n k n k Q 2 k 3 ( x ) = Q 3 n ( x ) Q 3 n ( x ) + 3 ( 2 x ) n Q n ( x ) ; k = 0 n n k P 2 k 3 ( x ) = ( 2 1 + x 2 ) n 2 P 3 n ( x ) P 3 n ( x ) 3 P n ( x ) , even n ; ( 2 1 + x 2 ) n 3 Q 3 n ( x ) P 3 n ( x ) 3 Q n ( x ) , odd n . k = 0 n n k Q 2 k 3 ( x ) = ( 2 1 + x 2 ) n P 3 n ( x ) Q 3 n ( x ) + 3 Q n ( x ) , even n ; ( 2 1 + x 2 ) n + 1 P 3 n ( x ) P 3 n ( x ) + 3 P n ( x ) , odd n .
  • Chebyshev polynomials ( n N 0 ):
    k = 0 n n k U 2 k 3 ( x ) = 2 n T 3 n ( x ) 4 ( x 2 1 ) U 3 n + 2 ( x ) 3 ( 2 x ) n 4 ( x 2 1 ) U n ( x ) , k = 0 n n k T 2 k 3 ( x ) = 2 n 2 T 3 n ( x ) T 3 n ( x ) + 3 4 ( 2 x ) n T n ( x ) ; k = 0 n ( 1 ) n k n k U 2 k 3 ( x ) = ( 2 x 2 1 ) n 2 U 2 n ( x ) U 3 n + 2 ( x ) 3 U n ( x ) , even n ; 2 ( 2 x 2 1 ) n 3 U 2 n ( x ) T 3 n + 3 ( x ) 3 T n + 1 ( x ) , odd n . k = 0 n ( 1 ) n k n k T 2 k 3 ( x ) = ( 2 x 2 1 ) n 4 U 2 n ( x ) T 3 n ( x ) + 3 T n ( x ) , even n ; ( 2 x 2 1 ) n + 1 8 U 2 n ( x ) U 3 n 1 ( x ) + 3 U n 1 ( x ) , odd n .

4.8. Binomial Quartic Sums

Theorem 15 
( n N ).
( a ) k = 0 n v 2 n 2 k n k Φ k 4 = Ψ 2 n Ψ 2 n 4 ( 2 u v ) n Ψ n + 6 ( 2 v 2 ) n 16 Δ 4 , ( b ) k = 0 n v 2 n 2 k n k Ψ k 4 = Ψ 2 n Ψ 2 n + 4 ( 2 u v ) n Ψ n + 6 ( 2 v 2 ) n ; ( c ) k = 0 n ( v 2 ) n k n k Φ k 4 = Ψ 2 n 16 Δ 4 ( 4 u Δ ) n Ψ n 4 Δ 4 ( 2 v Δ ) n , even n ; Φ 2 n 8 Δ 3 ( 4 u Δ ) n + Φ n 2 Δ 3 ( 2 v Δ ) n , odd n . ( d ) k = 0 n ( v 2 ) n k n k Ψ k 4 = Ψ 2 n ( 4 u Δ ) n + 4 Ψ n ( 2 v Δ ) n , even n ; 2 Δ Φ 2 n ( 4 u Δ ) n 8 Δ Φ n ( 2 v Δ ) n , odd n .
Proof. 
We prove Formula (c) by reformulating the binomial sum and then evaluating it in closed form as illustrated below:
k = 0 n ( v 2 ) n k n k Φ k 4 = k = 0 n ( v 2 ) n k n k α k γ k α γ 4 = k = 0 n ( v 2 ) n k n k α 4 k + γ 4 k 4 ( v α 2 ) k 4 ( v γ 2 ) k + 6 v 2 k ( 2 Δ ) 4 = ( α 4 v 2 ) n + ( γ 4 v 2 ) n 4 ( v 2 v α 2 ) n 4 ( v 2 v γ 2 ) n ( 2 Δ ) 4 = ( 4 u Δ ) n α 2 n + ( 1 ) n γ 2 n 4 ( 2 v Δ ) n ( α n + ( 1 ) n γ n ) ( 2 Δ ) 4 = Ψ 2 n 16 Δ 4 ( 4 u Δ ) n Ψ n 4 Δ 4 ( 2 v Δ ) n , even n ; Φ 2 n 8 Δ 3 ( 4 u Δ ) n + Φ n 2 Δ 3 ( 2 v Δ ) n , odd n .
The other three identities in the theorem can be shown similarly. □
  • Fibonacci and Lucas numbers ( m Z and n N ):
    k = 0 n n k F k 4 = 3 n L 2 n 4 ( 1 ) n L n + 6 × 2 n 25 ; k = 0 n n k L k 4 = 3 n L 2 n + 4 ( 1 ) n L n + 6 × 2 n ; k = 0 n ( 1 ) n k n k F k 4 = ( 5 ) n × L 2 n 25 4 L n 25 , even n ; F 2 n 5 5 + 4 F n 5 5 , odd n . k = 0 n ( 1 ) n k n k L k 4 = ( 5 ) n × L 2 n + 4 L n , even n ; 5 F 2 n 4 5 F n , odd n .
  • Pell and Pell–Lucas polynomials ( m Z and n N ):
    k = 0 n n k P k 4 ( x ) = Q 2 n ( x ) ( 2 + 4 x 2 ) n 4 ( 2 x ) n Q n ( x ) + 6 × 2 n 16 ( 1 + x 2 ) 2 , k = 0 n n k Q k 4 ( x ) = Q 2 n ( x ) ( 2 + 4 x 2 ) n + 4 ( 2 x ) n Q n ( x ) + 6 × 2 n ; k = 0 n ( 1 ) n k n k P k 4 ( x ) = ( 2 1 + x 2 ) n 3 × Q 2 n ( x ) 2 1 + x 2 ( 2 x ) n 2 Q n ( x ) 1 + x 2 , even n ; P 2 n ( x ) ( 2 x ) n + 4 P n ( x ) , odd n . k = 0 n ( 1 ) n k n k Q k 4 ( x ) = ( 2 1 + x 2 ) n + 1 × Q 2 n ( x ) 2 1 + x 2 ( 2 x ) n + 2 Q n ( x ) 1 + x 2 , even n ; P 2 n ( x ) ( 2 x ) n 4 P n ( x ) , odd n .
  • Chebyshev polynomials ( m Z and n N ):
    k = 0 n n k U k 4 ( x ) = T 2 n + 4 ( x ) ( 2 x 2 1 ) n 4 x n T n + 2 ( x ) + 3 2 3 n ( x 2 1 ) 2 ; k = 0 n n k T k 4 ( x ) = 2 n 3 T 2 n ( x ) ( 2 x 2 1 ) n + 4 x n T n ( x ) + 3 , k = 0 n ( 1 ) n k n k U k 4 ( x ) = 2 x 2 1 n 3 × ( 2 x ) n T 2 n + 4 ( x ) x 2 1 4 T n + 2 ( x ) x 2 1 , even n ; U 2 n + 3 ( x ) ( 2 x ) n 4 U n + 1 ( x ) , odd n . k = 0 n ( 1 ) n k n k T k 4 ( x ) = 2 x 2 1 n + 1 16 × ( 2 x ) n T 2 n ( x ) x 2 1 + 4 ( 1 ) n T n ( x ) x 2 1 , even n ; U 2 n 1 ( x ) ( 2 x ) n 4 ( 1 ) n U n 1 ( x ) , odd n .

5. Conclusions and Further Prospects

We have presented a comprehensive collection of the summation formulae for two (universal) sequences, Φ n ( u , v ) and Ψ n ( u , v ) . Detailed proofs are offered for only a few of them, as most of them can be validated without difficulty by employing recurrence relations, Binet-form expressions, and generating functions. To ensure accuracy, all the displayed equations have been verified by the computer algebra system Wolfram Mathematica (version 11). Our formulae unify numerous identities for the following six number/polynomial sequences:
  • Fibonacci and Lucas numbers mainly collected in Koshy’s monograph [4] and scattered through the literature (cf. [13,14,15,16,17,18,19,20,21,22,23,24,25,26,27]);
  • Pell and Pell–Lucas polynomials mainly collected in Koshy’s monograph [6] and scattered through the literature (cf. [8,10,11,28,29,30,31,32,33]);
  • Chebyshev polynomials of the first and second kinds mainly collected in Mason and Handscomb’s monograph [7] and scattered through the literature (cf. [34,35,36,37,38,39,40,41,42,43]).
It should be pointed out that there are important topics not covered in this paper. For instance, the following five themes:
  • Reciprocal sums (concerning Fibonacci/Lucas numbers [44,45,46,47]);
  • Multiple convolution sums (concerning Fibonacci/Lucas numbers [48,49,50,51] and Chebyshev polynomials [52,53,54]);
  • Power sums of higher orders (concerning Chebyshev polynomials [37,39,55,56]);
  • Binomial (finite and infinite) sums involving integer (floor and ceiling) functions [30,46,57,58,59,60,61];
  • Fibonomial/Lucanomial coefficients and related sums connected to the q-series theory (cf. [62,63,64,65,66]).
The authors believe that these topics are worthy of extensive investigation. Interested readers are encouraged to carry out further explorations.

Author Contributions

Investigation, correction, and editing, Y.K.; computation, editing, and writing, M.N.C.; original draft, review, and supervision, W.C. All authors have read and agreed to the published version of the manuscript.

Funding

The first author is supported by the Young and Middle-Aged Key Teachers Project of Zhoukou Normal University.

Data Availability Statement

The data are contained within the article.

Acknowledgments

The authors express their sincere gratitude to the four anonymous referees for their careful reading, critical comments, and valuable suggestions, which contribute significantly to the improvement of the manuscript during revision.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Levy, H.; Lessman, F. Finite Difference Equations; The Macmillan Company: New York, NY, USA, 1961. [Google Scholar]
  2. Comtet, L. Advanced Combinatorics: The Art of Finite and Infinite Expansions; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1974. [Google Scholar]
  3. Wilf, H.S. Generatingfunctionology, 2nd ed.; Academic Press Inc.: London, UK, 1994. [Google Scholar]
  4. Koshy, T. Fibonacci and Lucas Numbers with Applications; John Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
  5. Sloane, N.J.A. The On-Line Encyclopedia of Integer Sequences (OEIS). Available online: http://oeis.org/ (accessed on 11 November 2024).
  6. Koshy, T. Pell and Pell–Lucas Numbers with Applications; Springer: New York, NY, USA, 2014. [Google Scholar]
  7. Mason, J.C.; Handscomb, D.C. Chebyshev Polynomials; Chapman and Hall/CRC: New York, NY, USA, 2002. [Google Scholar] [CrossRef]
  8. Aziz, S.H.; Shihab, S.; Rasheed, M. On some properties of Pell polynomials. Al-Qadisiyah J. Pure Sci. 2021, 26, 4. [Google Scholar] [CrossRef]
  9. Patra, A.; Panda, G.K. Sums of finite products of Pell polynomials in terms of hypergeometric functions. J. Egypt. Math. Soc. 2022, 30, 4. [Google Scholar] [CrossRef]
  10. Boussayoud, A. On some identities and generating functions for Pell–Lucas numbers. Online J. Anal. Comb. 2017, 12, 1. [Google Scholar] [CrossRef]
  11. Sriprad, W.; Srisawat, S.; Tuitaku, K. Vieta-Pell-like polynomials and some identities. J. Sci. Arts. 2021, 4, 1011–1020. [Google Scholar] [CrossRef]
  12. Djordjevic, G.B. Convolutions of the Generalized Pell and Pell–Lucas Numbers. Filomat 2016, 30, 105–112. [Google Scholar] [CrossRef]
  13. Adegoke, K. Infinite arctangent sums involving Fibonacci and Lucas numbers. Note Number Theory Discret. Math. 2015, 21, 56–66. [Google Scholar]
  14. Hrovat, B.; Kelner, J.; Arangala, C. Sums of powers of Fibonacci and Lucas numbers. Minn. J. Undergrad. Math. 2016, 2, 1–12. Available online: https://pubs.lib.umn.edu/index.php/mjum/article/view/4125 (accessed on 4 April 2025).
  15. Azarian, M.K. Identities involving Lucas or Fibonacci and Lucas numbers as binomial sums. Int. J. Contemp. Math. Sci. 2012, 7, 2221–2227. [Google Scholar]
  16. Benjamin, A.; Quinn, J. Recounting Fibonacci and Lucas identities. Coll. Math. J. 1999, 30, 359–366. [Google Scholar] [CrossRef]
  17. Carlitz, L.; Ferns, H.H. Some Fibonacci and Lucas identities. Fibonacci Quart. 1970, 8, 61–73. [Google Scholar] [CrossRef]
  18. Chu, W.; Li, N.N. Power sums of Fibonacci and Lucas numbers. Quaest. Math. 2011, 34, 75–83. [Google Scholar] [CrossRef]
  19. Duran, Ö.; Ömür, N.; Koparal, S. Binomial sums with harmonic and Fibonacci numbers. J. Sci. Arts. 2024, 24, 389–398. [Google Scholar] [CrossRef]
  20. Grigffiths, M. From golden ratio equalities to Fibonacci and Lucas identities. Math. Gaz. 2013, 97, 234–241. [Google Scholar] [CrossRef]
  21. Gulec, H.H.; Taskara, N. A new approach to generalized Fibonacci and Lucas numbers with binomial coefficients. Appl. Math. Comput. 2013, 220, 482–486. [Google Scholar] [CrossRef]
  22. Howard, F.T. The sum of the squares of two generalized Fibonacci numbers. Fibonacci Quart. 2003, 41, 80–84. [Google Scholar] [CrossRef]
  23. Mansour, T. Squaring the terms of an -th order linear recurrence. Australas. J. Comb. 2005, 31, 15–20. [Google Scholar]
  24. Melham, R.S. Alternating sums of fourth powers of Fibonacci and Lucas numbers. Fibonacci Quart. 2000, 38, 254–259. [Google Scholar] [CrossRef]
  25. Spivey, M. Fibonacci identities via the determinant sum property. Col. Math. J. 2006, 37, 286–289. [Google Scholar] [CrossRef]
  26. Zhang, W. Some identities involving the Fibonacci numbers and Lucas numbers. Fibonacci Quart. 2004, 42, 149–154. [Google Scholar] [CrossRef]
  27. Chu, W. Fibonacci polynomials and Sylvester determinant of tridiagonal matrix. Appl. Math. Comput. 2010, 216, 1018–1023. [Google Scholar] [CrossRef]
  28. Bai, M.; Chu, W.; Guo, D. Reciprocal formulae among Pell and Lucas polynomials. Mathematics 2022, 10, 2691. [Google Scholar] [CrossRef]
  29. Cerin, Z.; Gianella, G.M. On sums of squares of Pell–Lucas numbers. Integers: Electron. J. Comb. Number Theory 2006, 6, 1–16. [Google Scholar]
  30. Chai, Q.J.; Wei, H.Y. The binomial sums for four types of polynomials involving floor and ceiling functions. Electron. Res. Arch. 2025, 33, 1384–1397. [Google Scholar] [CrossRef]
  31. Horadam, A.F.; Mahon, B.J.M. Pell and Pell–Lucas polynomials. Fibonacci Quart. 1985, 23, 7–20. [Google Scholar] [CrossRef]
  32. Kilic, E.; Prodinger, H. Some double binomial sums related with the Fibonacci, Pell and generalized order-k Fibonacci numbers. Rocky Mountain J. Math. 2013, 43, 975–987. [Google Scholar] [CrossRef]
  33. Tasci, D.; Yalcin, F. Vieta-Pell and Vieta–Pell–Lucas polynomials. Adv. Difference Equ. 2013, 2013, 224. [Google Scholar] [CrossRef]
  34. Adegoke, K.; Frontczak, R.; Goy, T. Binomial Fibonacci sums from Chebyshev polynomials. J. Integer Seq. 2023, 26, 23.9.6. [Google Scholar]
  35. Bedratyuk, L.; Luno, N. Derivations and identities for Chebyshev polynomials of the first and second kinds. arXiv 2019, arXiv:1910.10990. [Google Scholar] [CrossRef]
  36. Belbachir, H.; Bencherif, F. On some properties of Chebyshev polynomials. Discuss. Math. Gen. Algebra Appl. 2008, 28, 121–133. [Google Scholar] [CrossRef]
  37. Cesarano, C. Identities and generating functions on Chebyshev polynomials. Georgian Math. J. 2012, 19, 427–440. [Google Scholar] [CrossRef]
  38. Cesarano, C. Generalized Chebyshev polynomials. Hacet. J. Math. Stat. 2014, 43, 731–740. [Google Scholar]
  39. Dattoli, G.; Cesarano, C.; Saccheti, D. A note on Chebyshev polynomials. Ann. Univ. Ferrara 2001, 7, 107–115. [Google Scholar] [CrossRef]
  40. Prodinger, H. Representing derivatives of Chebyshev polynomials by Chebyshev polynomials and related questions. Open Math. 2017, 15, 1156–1160. [Google Scholar] [CrossRef]
  41. Rivlin, T.J. Chebyshev Polynomials: From Approximation Theory to Algebra & Number Theory; John Wiley & Sons: New York, NY, USA, 1990. [Google Scholar]
  42. Vitula, R.; Slota, D. On modified Chebyshev polynomials. J. Math. Anal. Appl. 2006, 324, 321–343. [Google Scholar]
  43. Fan, Z.; Chu, W. Convolutions involving Chebyshev polynomials. Electron. J. Math. 2022, 3, 38–46. [Google Scholar] [CrossRef]
  44. Chu, W.; Wang, X.X. Recurrence relations of the second order and infinite series identities. Ars Comb. 2011, 101, 449–457. [Google Scholar]
  45. Komatsu, T.; Laohakosol, V. On the sum of reciprocals of numbers satisfying a recurrence relation of order s. J. Integer Seq. 2010, 13, 1–9. [Google Scholar]
  46. Ohtsuka, H.; Nakamura, S. On the sum of reciprocal Fibonacci numbers. Fibonacci Quart. 2008, 46/47, 153–159. [Google Scholar] [CrossRef]
  47. Yang, F.; Li, Y. The infinite sums of reciprocals and the partial sums of Chebyshev polynomials. AIMS Math. 2021, 7, 334–348. [Google Scholar] [CrossRef]
  48. Chu, W.; Zhou, R.R. Two multiple convolutions on Fibonacci–like sequences. Fibonacci Quart. 2010, 48, 80–84. [Google Scholar] [CrossRef]
  49. Tasdemir, F. Triple sums including Fibonacci numbers with three binomial coefficients. Note. Number Theory Discrete Math. 2021, 27, 188–197. [Google Scholar] [CrossRef]
  50. Wu, Z.G.; Zhang, J. On the higher power sums of reciprocal higher–order sequences. Sci. World J. 2014, 2014, 521358. [Google Scholar] [CrossRef] [PubMed]
  51. Chu, W.; Vicenti, V. Funzione generatrice e polinomi incompleti di Fibonacci e Lucas. Boll. Unione Mat. Ital. 2003, B6, 289–308. [Google Scholar]
  52. Han, D.; Lv, X. On the Chebyshev polynomials and some of their new identities. Adv. Contin. Discret. Model. 2020, 2020, 86. [Google Scholar] [CrossRef]
  53. He, Y. Some results for sums of products of Chebyshev and Legendre polynomials. Adv. Contin. Discret. Model. 2019, 2019, 357. [Google Scholar] [CrossRef]
  54. Wang, S. Some new identities of Chebyshev polynomials and their applications. Adv. Difference Equ. 2015, 2015, 355. [Google Scholar] [CrossRef]
  55. Chen, L.; Wang, X. The power sums involving Fibonacci polynomials and their applications. Symmetry 2019, 11, 635. [Google Scholar] [CrossRef]
  56. Li, X.Y. Some identities involving Chebyshev polynomials. Math. Probl. Eng. 2015, 2015, 950695. [Google Scholar] [CrossRef]
  57. Holliday, S.H.; Komatsu, T. On the sum of reciprocal generalized Fibonacci numbers. Integers 2011, 11A, 11. [Google Scholar] [CrossRef]
  58. Kuhapatanakul, K. On the sums of reciprocal generalized Fibonacci numbers. J. Integer Seq. 2013, 16, 13.7.1. [Google Scholar]
  59. Andrews, G.E. Fibonacci numbers and the Rogers–Ramanujan identities. Fibonacci Quart. 2004, 42, 3–19. [Google Scholar]
  60. Chan, H.C. From Andrews’ formula for the Fibonacci numbers to the Rogers–Ramanujan identities. Fibonacci Quart. 2007, 45, 221–229. [Google Scholar] [CrossRef]
  61. Harne, S.; Badshah, V.H.; Verma, V. Fibonacci polynomial identities, binomial coefficients and Pascal’s triangle. Adv. Appl. Sci. Res. 2015, 6, 103–106. [Google Scholar]
  62. Chu, W.; Kilic, E. Quadratic sums of Gaussian q-binomial coefficients and Fibonomial coefficients. Ramanujan J. 2020, 51, 229–243. [Google Scholar] [CrossRef]
  63. Kilic, E. The generalized Fibonomial matrix. Eur. J. Comb. 2010, 31, 193–209. [Google Scholar] [CrossRef]
  64. Seibert, J.; Trojovsky, P. On some identities for the Fibonomial coefficients. Math. Slovaca 2005, 55, 9–19. [Google Scholar]
  65. Trojovsky, P. On some identities for the Fibonomial coefficients via generating function. Discret. Appl. Math. 2007, 155, 2017–2024. [Google Scholar] [CrossRef]
  66. Chu, W.; Kilic, E. Well–poised q-series and new Fibonomial–like sums. Kuwait J. Sci. 2024, 51, 100266. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Kang, Y.; Chen, M.N.; Chu, W. Overview of Six Number/Polynomial Sequences Defined by Quadratic Recurrence Relations. Symmetry 2025, 17, 714. https://doi.org/10.3390/sym17050714

AMA Style

Kang Y, Chen MN, Chu W. Overview of Six Number/Polynomial Sequences Defined by Quadratic Recurrence Relations. Symmetry. 2025; 17(5):714. https://doi.org/10.3390/sym17050714

Chicago/Turabian Style

Kang, Yujie, Marta Na Chen, and Wenchang Chu. 2025. "Overview of Six Number/Polynomial Sequences Defined by Quadratic Recurrence Relations" Symmetry 17, no. 5: 714. https://doi.org/10.3390/sym17050714

APA Style

Kang, Y., Chen, M. N., & Chu, W. (2025). Overview of Six Number/Polynomial Sequences Defined by Quadratic Recurrence Relations. Symmetry, 17(5), 714. https://doi.org/10.3390/sym17050714

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop