Integrated Circular Polarization Detectors Based on Asymmetric Materials or Structures
Abstract
:1. Introduction
2. Integrated Circular Polarization Detectors Based on Asymmetric Materials
2.1. Chiral Perovskite and Organic Materials
2.2. Asymmetric Two-Dimensional Materials and Topology Materials
3. Integrated Circular Polarization Detectors Based on Asymmetric Structures
3.1. Inherent Chirality of Symmetry-Broken Structures
3.2. Chiral Metamaterials for Circular Polarization Selective Discrimination
4. Challenge and Opportunity: Integrated Full-Stokes Polarization Detectors and Artificial Intelligence Algorithms
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, W.; Kim, J.-Y.; Wang, X.; Calcaterra, H.A.; Qu, Z.; Meshi, L.; Kotov, N.A. Assembly of mesoscale helices with near-unity enantiomeric excess and light-matter interactions for chiral semiconductors. Sci. Adv. 2017, 3, e1601159. [Google Scholar] [PubMed]
- Chenault, D.B.; Pezzaniti, J.L. Polarization Imaging Through Scattering Media. In Proceedings of the Polarization Analysis, Measurement, and Remote Sensing III, San Diego, CA, USA, 30 July–4 August 2000; Volume 4133, pp. 124–133. [Google Scholar]
- Xu, M.; Alfano, R.R. Circular polarization memory of light. Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 2005, 72, 065601. [Google Scholar]
- Sherson, J.F.; Krauter, H.; Olsson, R.K.; Julsgaard, B.; Hammerer, K.; Cirac, I.; Polzik, E.S. Quantum teleportation between light and matter. Nature 2006, 443, 557–560. [Google Scholar]
- Nagali, E.; Sciarrino, F.; De Martini, F.; Marrucci, L.; Piccirillo, B.; Karimi, E.; Santamato, E. Quantum information transfer from spin to orbital angular momentum of photons. Phys. Rev. Lett. 2009, 103, 013601. [Google Scholar] [CrossRef]
- Edamatsu, K. Entangled photons: Generation, observation, and characterization. Jpn. J. Appl. Phys. 2007, 46, 7175. [Google Scholar]
- Oohata, G.; Shimizu, R.; Edamatsu, K. Photon polarization entanglement induced by Biexciton: Experimental evidence for violation of Bell’s inequality. Phys. Rev. Lett. 2007, 98, 140503. [Google Scholar]
- Vernaz-Gris, P.; Huang, K.; Cao, M.; Sheremet, A.S.; Laurat, J. Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble. Nat. Commun. 2018, 9, 363. [Google Scholar]
- Tsurumoto, K.; Kuroiwa, R.; Kano, H.; Sekiguchi, Y.; Kosaka, H. Quantum teleportation-based state transfer of photon polarization into a carbon spin in diamond. Commun. Phys. 2019, 2, 74. [Google Scholar] [CrossRef]
- Fujita, T.; Morimoto, K.; Kiyama, H.; Allison, G.; Larsson, M.; Ludwig, A.; Valentin, S.R.; Wieck, A.D.; Oiwa, A.; Tarucha, S. Angular momentum transfer from photon polarization to an electron spin in a gate-defined quantum dot. Nat. Commun. 2019, 10, 2991. [Google Scholar]
- Demos, S.G.; Radousky, H.B.; Alfano, R.R. Subsurface imaging using the Spectral Polarization Difference technique and NIR illumination. In Proceedings of the Optical Tomography and Spectroscopy of Tissue III, San Jose, CA, USA, 23–29 January 1999; Volume 3597, pp. 406–410. [Google Scholar]
- Zhao, Y.; Zhang, L.; Pan, Q. Spectropolarimetric imaging for pathological analysis of skin. Appl. Opt. 2009, 48, D236–D246. [Google Scholar]
- Hendry, E.; Carpy, T.; Johnston, J.; Popland, M.; Mikhaylovskiy, R.V.; Lapthorn, A.J.; Kelly, S.M.; Barron, L.D.; Gadegaard, N.; Kadodwala, M. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol. 2010, 5, 783–787. [Google Scholar] [CrossRef]
- Tyo, J.S.; Goldstein, D.L.; Chenault, D.B.; Shaw, J.A. Review of passive imaging polarimetry for remote sensing applications. Appl. Opt. 2006, 45, 5453–5469. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.; Tamura, M.; Lucas, P.W.; Hashimoto, J.; Kusakabe, N.; Kandori, R.; Nakajima, Y.; Nagayama, T.; Nagata, T.; Hough, J.H. Near-Infrared Circular Polarization Images of Ngc 6334-V. Astrophys. J. 2013, 765, L6. [Google Scholar] [CrossRef]
- Rubin, N.A.; D’Aversa, G.; Chevalier, P.; Shi, Z.; Chen, W.T.; Capasso, F. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science 2019, 365, eaax1839. [Google Scholar] [CrossRef] [PubMed]
- Neubrech, F.; Hentschel, M.; Liu, N. Reconfigurable Plasmonic Chirality: Fundamentals and Applications. Adv. Mater. 2020, 32, e1905640. [Google Scholar] [CrossRef]
- Zhen, Y.; Deng, J.; Bu, Y.; Dai, X. Recent advances in on-chip infrared polarization detection. J. Infrared Millim. Waves 2024, 43, 52–62. [Google Scholar]
- Ishii, A.; Miyasaka, T. Direct detection of circular polarized light in helical 1D perovskite-based photodiode. Sci. Adv. 2020, 6, eabd3274. [Google Scholar] [CrossRef]
- Liang, N.; Cao, C.; Xie, Z.; Liu, J.; Feng, Y.; Yao, C.-J. Advances in near-infrared circularly polarized luminescence with organometallic and small organic molecules. Mater. Today 2024, 75, 309–333. [Google Scholar] [CrossRef]
- Chen, G.; Liu, X.; An, J.; Wang, S.; Zhao, X.; Gu, Z.; Yuan, C.; Xu, X.; Bao, J.; Hu, H.-S.; et al. Nucleation-mediated growth of chiral 3D organic–inorganic perovskite single crystals. Nat. Chem. 2023, 15, 1581–1590. [Google Scholar] [CrossRef]
- Long, M.; Wang, P.; Fang, H.; Hu, W. Progress, Challenges, and Opportunities for 2D Material Based Photodetectors. Adv. Funct. Mater. 2018, 29, 1803807. [Google Scholar] [CrossRef]
- Low, T.; Chaves, A.; Caldwell, J.D.; Kumar, A.; Fang, N.X.; Avouris, P.; Heinz, T.F.; Guinea, F.; Martin-Moreno, L.; Koppens, F. Polaritons in layered two-dimensional materials. Nat. Mater. 2017, 16, 182–194. [Google Scholar] [PubMed]
- Wang, Y.; Huang, D.; Xia, M.; Zhou, J.; Chen, Y.; Liao, Y.; Zhang, X. Directional Chiral Exciton Emission via Topological Polarization Singularities in all Van der Waals Metasurfaces. Adv. Mater. 2025, 37, e2414174. [Google Scholar] [CrossRef]
- Basov, D.N.; Fogler, M.M.; Garcia de Abajo, F.J. Polaritons in van der Waals materials. Science 2016, 354, aag1992. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Qiu, M.; Cao, Z.; Zhou, J.; Ong, H.C.; Jin, W.; Du, J.; Lei, D. High-Q Circular Dichroism Resonances in Plasmonic Lattices with Chiral Unit Cells. Adv. Funct. Mater. 2022, 32, 2204095. [Google Scholar]
- Zhou, J.; Deng, J.; Shi, M. Cavity coupled plasmonic resonator enhanced infrared detectors. Appl. Phys. Lett. 2021, 119, 160504. [Google Scholar]
- Kong, X.T.; Khosravi Khorashad, L.; Wang, Z.; Govorov, A.O. Photothermal Circular Dichroism Induced by Plasmon Resonances in Chiral Metamaterial Absorbers and Bolometers. Nano Lett. 2018, 18, 2001–2008. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Coppens, Z.J.; Besteiro, L.V.; Wang, W.; Govorov, A.O.; Valentine, J. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat. Commun. 2015, 6, 8379. [Google Scholar]
- Ali, H.; Zanotti, S.; Pellegrini, G.; Petronijevic, E.; Andreani, L.C. Maximum Chirality Empowered by a Bound State in a Continuum in a Plasmonic Metasurface. ACS Appl. Opt. Mater. 2024, 2, 825–833. [Google Scholar]
- Gryb, D.; Wendisch, F.J.; Aigner, A.; Golz, T.; Tittl, A.; de S Menezes, L.; Maier, S.A. Two-Dimensional Chiral Metasurfaces Obtained by Geometrically Simple Meta-atom Rotations. Nano Lett. 2023, 23, 8891–8897. [Google Scholar]
- Kuhner, L.; Wendisch, F.J.; Antonov, A.A.; Burger, J.; Huttenhofer, L.; de S Menezes, L.; Maier, S.A.; Gorkunov, M.V.; Kivshar, Y.; Tittl, A. Unlocking the out-of-plane dimension for photonic bound states in the continuum to achieve maximum optical chirality. Light Sci. Appl. 2023, 12, 250. [Google Scholar] [CrossRef]
- Guan, T.; Wang, Z.; Wang, R.; Wu, Z.; Wang, C.; Wu, D.; Chu, J.; Chen, Y. Ultrasensitive circular dichroism spectroscopy based on coupled quasi-bound states in the continuum. Nanophotonics 2025. [Google Scholar] [CrossRef]
- Gorkunov, M.V.; Antonov, A.A.; Kivshar, Y.S. Metasurfaces with Maximum Chirality Empowered by Bound States in the Continuum. Phys. Rev. Lett. 2020, 125, 093903. [Google Scholar] [CrossRef]
- Kuznetsov, A.I.; Brongersma, M.L.; Yao, J.; Chen, M.K.; Levy, U.; Tsai, D.P.; Zheludev, N.I.; Faraon, A.; Arbabi, A.; Yu, N.; et al. Roadmap for Optical Metasurfaces. ACS Photonics 2024, 11, 816–865. [Google Scholar] [CrossRef]
- Chu, Z.; Zhou, J.; Dai, X.; Li, F.; Lan, M.; Ji, Z.; Lu, W.; Chen, X. Circular Polarization Discrimination Enhanced by Anisotropic Media. Adv. Opt. Mater. 2020, 8, 1901800. [Google Scholar] [CrossRef]
- Ouyang, L.; Wang, W.; Rosenmann, D.; Czaplewski, D.A.; Gao, J.; Yang, X. Near-infrared chiral plasmonic metasurface absorbers. Opt. Express 2018, 26, 31484–31489. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Ren, M.; Wu, W.; Yu, D.; Cai, W.; Xu, J. Phase-Transition Optical Activity in Chiral Metamaterials. Phys. Rev. Lett. 2020, 125, 237401. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Chu, Z.; Zhou, J.; Deng, J. Compact on-chip THz circular polarization detectors with high discrimination based on chiral plasmonic antennas. Opt. Mater. Express 2023, 13, 3330–3341. [Google Scholar] [CrossRef]
- Li, F.; Zhou, J.; Deng, J.; Shen, J. Enhanced THz Circular-Polarization Detection in Miniaturized Chips with Chiral Antennas. Photonics 2024, 11, 162. [Google Scholar] [CrossRef]
- Chen, C.; Gao, L.; Gao, W.; Ge, C.; Du, X.; Li, Z.; Yang, Y.; Niu, G.; Tang, J. Circularly polarized light detection using chiral hybrid perovskite. Nat. Commun. 2019, 10, 1927. [Google Scholar] [CrossRef]
- Liu, T.; Shi, W.; Tang, W.; Liu, Z.; Schroeder, B.C.; Fenwick, O.; Fuchter, M.J. High Responsivity Circular Polarized Light Detectors based on Quasi Two-Dimensional Chiral Perovskite Films. ACS Nano 2022, 16, 2682–2689. [Google Scholar] [CrossRef]
- Liu, L.; Yang, Y.; Zhu, L.; Zhang, J.; Chen, K.; Wei, Z. Chiral Non-Fullerene Acceptor Enriched Bulk Heterojunctions Enable High-Performance Near-Infrared Circularly Polarized Light Detection. Small 2022, 18, e2202941. [Google Scholar] [PubMed]
- Wan, L.; Zhang, R.; Cho, E.; Li, H.; Coropceanu, V.; Brédas, J.-L.; Gao, F. Sensitive near-infrared circularly polarized light detection via non-fullerene acceptor blends. Nat. Photonics 2023, 17, 649–655. [Google Scholar]
- Xu, S.-Y.; Ma, Q.; Shen, H.; Fatemi, V.; Wu, S.; Chang, T.-R. Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2. Nat. Phys. 2018, 14, 900–906. [Google Scholar] [CrossRef]
- Osterhoudt, G.B.; Diebel, L.K.; Gray, M.J.; Yang, X.; Stanco, J.; Huang, X.; Shen, B.; Ni, N.; Moll, P.J.W.; Ran, Y.; et al. Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal. Nat. Mater. 2019, 18, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Li, J.; Zhou, B.; Li, D. Self-Powered Filterless On-Chip Full-Stokes Polarimeter. Nano Lett. 2021, 21, 6156–6162. [Google Scholar] [CrossRef]
- Ma, J.; Cheng, B.; Li, L.; Fan, Z.; Mu, H.; Lai, J.; Song, X.; Yang, D.; Cheng, J.; Wang, Z.; et al. Unveiling Weyl-related optical responses in semiconducting tellurium by mid-infrared circular photogalvanic effect. Nat. Commun. 2022, 13, 5425. [Google Scholar] [CrossRef]
- Yoo, S.; Park, Q.H. Metamaterials and chiral sensing: A review of fundamentals and applications. Nanophotonics 2019, 8, 249–261. [Google Scholar] [CrossRef]
- Shen, J.; Zhu, T.; Zhou, J.; Chu, Z.; Ren, X.; Deng, J.; Dai, X.; Li, F.; Wang, B.; Chen, X.; et al. High-Discrimination Circular Polarization Detection Based on Dielectric-Metal-Hybrid Chiral Metamirror Integrated Quantum Well Infrared Photodetectors. Sensors 2022, 23, 168. [Google Scholar] [CrossRef]
- Wang, C.; Wang, R.; Cheng, X.; Hu, X.; Wang, C. Passively Broadband Tunable Dual Circular Dichroism via Bound States in the Continuum in Topological Chiral Metasurface. ACS Nano 2024, 18, 18922–18932. [Google Scholar]
- Wu, Z.; Zheng, Y. Moiré Chiral Metamaterials. Adv. Opt. Mater. 2017, 5, 1700034. [Google Scholar]
- Shi, T.; Deng, Z.L.; Geng, G.; Zeng, X.; Zeng, Y.; Hu, G.; Overvig, A.; Li, J.; Qiu, C.W.; Alu, A.; et al. Planar chiral metasurfaces with maximal and tunable chiroptical response driven by bound states in the continuum. Nat. Commun. 2022, 13, 4111. [Google Scholar] [PubMed]
- Chen, Y.; Deng, H.; Sha, X.; Chen, W.; Wang, R.; Chen, Y.H.; Wu, D.; Chu, J.; Kivshar, Y.S.; Xiao, S.; et al. Observation of intrinsic chiral bound states in the continuum. Nature 2023, 613, 474–478. [Google Scholar] [PubMed]
- Lyu, B.; Li, Y.; Jia, Q.; Li, H.; Yang, G.; Cao, F.; Kou, S.; Liu, D.; Cao, T.; Li, G.; et al. Manipulating the Chirality of Moiré Metasurface by Symmetry Breaking. Laser Photonics Rev. 2023, 17, 2201004. [Google Scholar] [CrossRef]
- Sha, X.; Du, K.; Zeng, Y.; Lai, F.; Yin, J.; Zhang, H.; Song, B.; Han, J.; Xiao, S.; Kivshar, Y.; et al. Chirality tuning and reversing with resonant phase-change metasurfaces. Sci. Adv. 2024, 10, eadn9017. [Google Scholar]
- Chen, W.; Wang, Z.; Gorkunov, M.V.; Qin, J.; Wang, R.; Wang, C.; Wu, D.; Chu, J.; Wang, X.; Kivshar, Y.; et al. Uncovering Maximum Chirality in Resonant Nanostructures. Nano Lett. 2024, 24, 9643–9649. [Google Scholar]
- Qin, C.; Deng, Y.; Lyu, T.; Meng, C.; Im Sande, S.; Bozhevolnyi, S.I.; Shi, J.; Ding, F. Rotation-induced plasmonic chiral quasi-bound states in the continuum. Photonics Res. 2024, 13, 69–79. [Google Scholar]
- Zhou, J.; Wang, Y.; Xia, M.; Chen, Y.; Huang, D.; Zhang, X. Excitonic van der Waals Metasurfaces for Resonant Wavefront Shaping at Deep Subwavelength Thickness Scale. Nano Lett. 2024, 24, 9658–9665. [Google Scholar] [PubMed]
- Gansel, J.K.; Latzel, M.; Frölich, A.; Kaschke, J.; Thiel, M.; Wegener, M. Tapered gold-helix metamaterials as improved circular polarizers. Appl. Phys. Lett. 2012, 100, 101109. [Google Scholar]
- Mark, A.G.; Gibbs, J.G.; Lee, T.C.; Fischer, P. Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nat. Mater. 2013, 12, 802–807. [Google Scholar]
- Cui, Y.; Kang, L.; Lan, S.; Rodrigues, S.; Cai, W. Giant chiral optical response from a twisted-arc metamaterial. Nano Lett. 2014, 14, 1021–1025. [Google Scholar]
- Pfeiffer, C.; Zhang, C.; Ray, V.; Guo, L.J.; Grbic, A. High performance bianisotropic metasurfaces: Asymmetric transmission of light. Phys. Rev. Lett. 2014, 113, 023902. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Rodrigues, S.P.; Taghinejad, M.; Lan, S.; Lee, K.T.; Liu, Y.; Werner, D.H.; Urbas, A.; Cai, W. Preserving Spin States upon Reflection: Linear and Nonlinear Responses of a Chiral Meta-Mirror. Nano Lett. 2017, 17, 7102–7109. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Plum, E.; Yang, Q.; Zhang, X.; Xu, Q.; Xu, Y.; Han, J.; Zhang, W. Reflective chiral meta-holography: Multiplexing holograms for circularly polarized waves. Light Sci. Appl. 2018, 7, 25. [Google Scholar] [CrossRef]
- Afshinmanesh, F.; White, J.S.; Cai, W.; Brongersma, M.L. Measurement of the polarization state of light using an integrated plasmonic polarimeter. Nanophotonics 2012, 1, 125–129. [Google Scholar] [CrossRef]
- Peng, J.; Cumming, B.P.; Gu, M. Direct detection of photon spin angular momentum by a chiral graphene mid-infrared photodetector. Opt. Lett. 2019, 44, 2998–3001. [Google Scholar] [CrossRef]
- Jiang, Q.; Du, B.; Jiang, M.; Liu, D.; Liu, Z.; Li, B.; Liu, Z.; Lin, F.; Zhu, X.; Fang, Z. Ultrathin circular polarimeter based on chiral plasmonic metasurface and monolayer MoSe(2). Nanoscale 2020, 12, 5906–5913. [Google Scholar] [CrossRef]
- Gansel, J.K.; Thiel, M.; Rill, M.S.; Decker, M.; Bade, K.; Saile, V.; von Freymann, G.; Linden, S.; Wegener, M. Gold helix photonic metamaterial as broadband circular polarizer. Science 2009, 325, 1513–1515. [Google Scholar] [CrossRef]
- Esposito, M.; Tasco, V.; Todisco, F.; Cuscunà, M.; Benedetti, A.; Sanvitto, D.; Passaseo, A. Triple-helical nanowires by tomographic rotatory growth for chiral photonics. Nat. Commun. 2015, 6, 6484. [Google Scholar] [CrossRef]
- Zhao, Y.; Belkin, M.A.; Alu, A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat. Commun. 2012, 3, 870. [Google Scholar] [CrossRef]
- Wang, Z.; Jia, H.; Yao, K.; Cai, W.; Chen, H.; Liu, Y. Circular Dichroism Metamirrors with Near-Perfect Extinction. ACS Photonics 2016, 3, 2096–2101. [Google Scholar] [CrossRef]
- Li, Z.; Liu, W.; Cheng, H.; Choi, D.Y.; Chen, S.; Tian, J. Spin-Selective Full-Dimensional Manipulation of Optical Waves with Chiral Mirror. Adv. Mater. 2020, 32, e1907983. [Google Scholar]
- Kang, L.; Wang, C.Y.; Guo, X.; Ni, X.; Liu, Z.; Werner, D.H. Nonlinear Chiral Meta-Mirrors: Enabling Technology for Ultrafast Switching of Light Polarization. Nano Lett. 2020, 20, 2047–2055. [Google Scholar] [PubMed]
- Bansal, S.; Singh, A.K.; Das, A.; Jain, P.; Prakash, K.; Sharma, K.; Kumar, N.; Sardana, N.; Gupta, N.; Kumar, S. Enhanced Optoelectronic Properties of Bilayer Graphene/HgCdTe-Based Single- and Dual-Junction Photodetectors in Long Infrared Regime. IEEE Trans. Nanotechnol. 2019, 18, 781–789. [Google Scholar] [CrossRef]
- Bansal, S.; Prakash, K.; Sharma, K.; Sardana, N.; Kumar, S.; Gupta, N.; Singh, A.K. A highly efficient bilayer graphene/ZnO/silicon nanowire based heterojunction photodetector with broadband spectral response. Nanotechnology 2020, 31, 405205. [Google Scholar] [CrossRef]
- Bu, Y.; Ren, X.; Zhou, J.; Zhang, Z.; Deng, J.; Xu, H.; Xie, R.; Li, T.; Hu, W.; Guo, X.; et al. Configurable circular-polarization-dependent optoelectronic silent state for ultrahigh light ellipticity discrimination. Light Sci. Appl. 2023, 12, 176. [Google Scholar] [PubMed]
- Liu, Z.; Gao, H.; Ma, T.; Ray, V.; Liu, N.; Zhang, X.; Guo, L.J.; Zhang, C. Broadband spin and angle co-multiplexed waveguide-based metasurface for six-channel crosstalk-free holographic projection. eLight 2024, 4, 7. [Google Scholar]
- Martin, J.P.; Joseph, C.S.; Giles, R.H. Continuous-wave circular polarization terahertz imaging. J. Biomed. Opt. 2016, 21, 70502. [Google Scholar]
- Nishizawa, N.; Al-Qadi, B.; Kuchimaru, T. Angular optimization for cancer identification with circularly polarized light. J. Biophotonics 2021, 14, e202000380. [Google Scholar] [CrossRef]
- Hu, H.; Zhao, L.; Li, X.; Wang, H.; Yang, J.; Li, K.; Liu, T. Polarimetric image recovery in turbid media employing circularly polarized light. Opt. Express 2018, 26, 25047–25059. [Google Scholar] [CrossRef]
- Wang, Y.; Du, F.; Ma, J.; Tan, L. Employing circle polarization shift keying in free space optical communication with gamma–gamma atmospheric turbulence channel. Opt. Commun. 2014, 333, 167–174. [Google Scholar]
- Flamini, F.; Spagnolo, N.; Sciarrino, F. Photonic quantum information processing: A review. Rep. Prog. Phys. 2019, 82, 016001. [Google Scholar] [CrossRef]
- Zhao, Y.; Qiu, Y.; Feng, J.; Zhao, J.; Chen, G.; Gao, H.; Zhao, Y.; Jiang, L.; Wu, Y. Chiral 2D-Perovskite Nanowires for Stokes Photodetectors. J. Am. Chem. Soc. 2021, 143, 8437–8445. [Google Scholar]
- Zuo, J.; Bai, J.; Choi, S.; Basiri, A.; Chen, X.; Wang, C.; Yao, Y. Chip-integrated metasurface full-Stokes polarimetric imaging sensor. Light Sci. Appl. 2023, 12, 218. [Google Scholar] [PubMed]
- Li, H.; Zhao, C.; Li, J.; Zheng, C.; Xu, H.; Xu, W.; Tan, Q.; Song, C.; Shen, Y.; Yao, J. Broadband all-dielectric meta-lenses with terahertz full-Stokes polarization detection behavior. Opt. Express 2024, 32, 37916–37927. [Google Scholar]
- Bai, J.; Wang, C.; Chen, X.; Basiri, A.; Wang, C.; Yao, Y. Chip-integrated plasmonic flat optics for mid-infrared full-Stokes polarization detection. Photonics Res. 2019, 7, 1051–1060. [Google Scholar]
- Li, L.; Wang, J.; Kang, L.; Liu, W.; Yu, L.; Zheng, B.; Brongersma, M.L.; Werner, D.H.; Lan, S.; Shi, Y.; et al. Monolithic Full-Stokes Near-Infrared Polarimetry with Chiral Plasmonic Metasurface Integrated Graphene-Silicon Photodetector. ACS Nano 2020, 14, 16634–16642. [Google Scholar] [PubMed]
- Lee, K.; Yun, H.; Mun, S.E.; Lee, G.Y.; Sung, J.; Lee, B. Ultracompact Broadband Plasmonic Polarimeter. Laser Photonics Rev. 2018, 12, 1700297. [Google Scholar]
- Shen, J.; Zhou, J.; Zhu, T.; Deng, J.; Wang, B.; Jing, W.; Ma, J.; Qin, X.; Liu, H.; Li, J.; et al. On-chip long-wavelength infrared polarimeter for full-Stokes polarization detection. Opt. Mater. Express 2023, 13, 2475–2488. [Google Scholar]
- Arbabi, E.; Kamali, S.M.; Arbabi, A.; Faraon, A. Full-Stokes Imaging Polarimetry Using Dielectric Metasurfaces. ACS Photonics 2018, 5, 3132–3140. [Google Scholar]
- Ma, J.; Fang, C.; Liang, L.; Wang, H.; Li, D. Full-Stokes Polarimeter Based on Chiral Perovskites with Chirality and Large Optical Anisotropy. Small 2021, 17, e2103855. [Google Scholar]
- Ma, C.; Yuan, S.; Cheung, P.; Watanabe, K.; Taniguchi, T.; Zhang, F.; Xia, F. Intelligent infrared sensing enabled by tunable moire quantum geometry. Nature 2022, 604, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Dai, M.; Wang, C.; Qiang, B.; Wang, F.; Ye, M.; Han, S.; Luo, Y.; Wang, Q.J. On-chip mid-infrared photothermoelectric detectors for full-Stokes detection. Nat. Commun. 2022, 13, 4560. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Shi, M.; Wang, R.; Zhen, Y.; Ni, Z.; Gao, W.; Liu, X.; Dai, X.; Zhou, J.; Chen, Y.; et al. An on-chip full-Stokes polarimeter based on optoelectronic polarization eigenvectors. Nat. Electron. 2024, 1–11, 1004–1014. [Google Scholar] [CrossRef]
- Bansal, S.; Rajpoot, A.K.; Chamundeswari, G.; Prakash, K.; Kumar, P.R.; Rashed, A.N.Z.; Soliman, M.S.; Islam, M.T. Pt/ZnO and Pt/few-layer graphene/ZnO Schottky devices with Al ohmic contacts using Atlas simulation and machine learning. J. Sci. Adv. Mater. Devices 2024, 9, 100798. [Google Scholar] [CrossRef]
Devices Structure | CPER | Responsivity | λ | Ref. |
---|---|---|---|---|
Organic–inorganic hybrid (α-PEA) PbI3 perovskites | 1.1 | 0.795 A W−1 | 395 nm | [41] |
(NEA)2(MA)n-1PbnI3n+1 perovskite | 1.16 | 15.7 A W−1 | 405 nm | [42] |
Chiral nonfullerene acceptor enriched BHJs | 1.02 | 0.4 A W−1 | 830 nm | [43] |
Non-fullerene acceptor blends | 1.09 | 0.4 A W−1 | 700 nm | [44] |
Monolayer WTe2 | 3.56 | 41 nA W−1 | 10.6 μm | [45] |
TaAs | 1.72 | − | 10.6 μm | [46] |
Single-layer MoS2/few-layer MoS2 homojunction | 1.1 | 0.28 A W−1 | 670 nm | [47] |
Te | 1.80/1.47 | − | 4.0 μm/10.6 μm | [48] |
Double-sided scythe α-Si/SiO2 | 27.6 | − | 1.42 μm | [53] |
TiO2 slant-perturbation metasurface | 13.4 | − | 618 nm | [54] |
Bilayer gold nanorod twisted Moiré metasurface | 9.5 | − | 1224 nm | [55] |
Sb2S3/polyimide/Si metasurface/SiO2 | 46.6 | − | 1518 nm | [56] |
Au bricks/SiO2/Au | 2.1 | − | 920 nm | [58] |
Gold helices | 9.3 | − | 3.5 μm | [69] |
Twisted gold metamaterials | 1.9 | − | 780 nm | [71] |
Al chiral mirror/SiO2/Al | 4.5 | − | 1400 nm | [73] |
α-Si chiral mirror/SiO2/Ag | 2.3 | 1530 nm | [74] | |
MoS2/Au z-antenna/SiO2/Au | ~1.5 × 105 | 0.4 mA W−1 | 1.48 μm | [77] |
Single-crystalline nanowire arrays of chiral 2D perovskites | 1.2 | 47.1 A W−1 | 505 nm | [84] |
MetaPolarIm | 20 | − | 650 nm | [85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, T.; Jing, W.; Deng, J.; Zhang, Y.; Ye, J.; Zhou, J.; Chen, X. Integrated Circular Polarization Detectors Based on Asymmetric Materials or Structures. Symmetry 2025, 17, 484. https://doi.org/10.3390/sym17040484
Zhu T, Jing W, Deng J, Zhang Y, Ye J, Zhou J, Chen X. Integrated Circular Polarization Detectors Based on Asymmetric Materials or Structures. Symmetry. 2025; 17(4):484. https://doi.org/10.3390/sym17040484
Chicago/Turabian StyleZhu, Tianyun, Wenji Jing, Jie Deng, Yujie Zhang, Jiexian Ye, Jing Zhou, and Xiaoshuang Chen. 2025. "Integrated Circular Polarization Detectors Based on Asymmetric Materials or Structures" Symmetry 17, no. 4: 484. https://doi.org/10.3390/sym17040484
APA StyleZhu, T., Jing, W., Deng, J., Zhang, Y., Ye, J., Zhou, J., & Chen, X. (2025). Integrated Circular Polarization Detectors Based on Asymmetric Materials or Structures. Symmetry, 17(4), 484. https://doi.org/10.3390/sym17040484