Integrated Circular Polarization Detectors Based on Asymmetric Materials or Structures
Abstract
1. Introduction
2. Integrated Circular Polarization Detectors Based on Asymmetric Materials
2.1. Chiral Perovskite and Organic Materials
2.2. Asymmetric Two-Dimensional Materials and Topology Materials
3. Integrated Circular Polarization Detectors Based on Asymmetric Structures
3.1. Inherent Chirality of Symmetry-Broken Structures
3.2. Chiral Metamaterials for Circular Polarization Selective Discrimination
4. Challenge and Opportunity: Integrated Full-Stokes Polarization Detectors and Artificial Intelligence Algorithms
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, W.; Kim, J.-Y.; Wang, X.; Calcaterra, H.A.; Qu, Z.; Meshi, L.; Kotov, N.A. Assembly of mesoscale helices with near-unity enantiomeric excess and light-matter interactions for chiral semiconductors. Sci. Adv. 2017, 3, e1601159. [Google Scholar] [PubMed]
- Chenault, D.B.; Pezzaniti, J.L. Polarization Imaging Through Scattering Media. In Proceedings of the Polarization Analysis, Measurement, and Remote Sensing III, San Diego, CA, USA, 30 July–4 August 2000; Volume 4133, pp. 124–133. [Google Scholar]
- Xu, M.; Alfano, R.R. Circular polarization memory of light. Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 2005, 72, 065601. [Google Scholar]
- Sherson, J.F.; Krauter, H.; Olsson, R.K.; Julsgaard, B.; Hammerer, K.; Cirac, I.; Polzik, E.S. Quantum teleportation between light and matter. Nature 2006, 443, 557–560. [Google Scholar]
- Nagali, E.; Sciarrino, F.; De Martini, F.; Marrucci, L.; Piccirillo, B.; Karimi, E.; Santamato, E. Quantum information transfer from spin to orbital angular momentum of photons. Phys. Rev. Lett. 2009, 103, 013601. [Google Scholar] [CrossRef]
- Edamatsu, K. Entangled photons: Generation, observation, and characterization. Jpn. J. Appl. Phys. 2007, 46, 7175. [Google Scholar]
- Oohata, G.; Shimizu, R.; Edamatsu, K. Photon polarization entanglement induced by Biexciton: Experimental evidence for violation of Bell’s inequality. Phys. Rev. Lett. 2007, 98, 140503. [Google Scholar]
- Vernaz-Gris, P.; Huang, K.; Cao, M.; Sheremet, A.S.; Laurat, J. Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble. Nat. Commun. 2018, 9, 363. [Google Scholar]
- Tsurumoto, K.; Kuroiwa, R.; Kano, H.; Sekiguchi, Y.; Kosaka, H. Quantum teleportation-based state transfer of photon polarization into a carbon spin in diamond. Commun. Phys. 2019, 2, 74. [Google Scholar] [CrossRef]
- Fujita, T.; Morimoto, K.; Kiyama, H.; Allison, G.; Larsson, M.; Ludwig, A.; Valentin, S.R.; Wieck, A.D.; Oiwa, A.; Tarucha, S. Angular momentum transfer from photon polarization to an electron spin in a gate-defined quantum dot. Nat. Commun. 2019, 10, 2991. [Google Scholar]
- Demos, S.G.; Radousky, H.B.; Alfano, R.R. Subsurface imaging using the Spectral Polarization Difference technique and NIR illumination. In Proceedings of the Optical Tomography and Spectroscopy of Tissue III, San Jose, CA, USA, 23–29 January 1999; Volume 3597, pp. 406–410. [Google Scholar]
- Zhao, Y.; Zhang, L.; Pan, Q. Spectropolarimetric imaging for pathological analysis of skin. Appl. Opt. 2009, 48, D236–D246. [Google Scholar]
- Hendry, E.; Carpy, T.; Johnston, J.; Popland, M.; Mikhaylovskiy, R.V.; Lapthorn, A.J.; Kelly, S.M.; Barron, L.D.; Gadegaard, N.; Kadodwala, M. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol. 2010, 5, 783–787. [Google Scholar] [CrossRef]
- Tyo, J.S.; Goldstein, D.L.; Chenault, D.B.; Shaw, J.A. Review of passive imaging polarimetry for remote sensing applications. Appl. Opt. 2006, 45, 5453–5469. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.; Tamura, M.; Lucas, P.W.; Hashimoto, J.; Kusakabe, N.; Kandori, R.; Nakajima, Y.; Nagayama, T.; Nagata, T.; Hough, J.H. Near-Infrared Circular Polarization Images of Ngc 6334-V. Astrophys. J. 2013, 765, L6. [Google Scholar] [CrossRef]
- Rubin, N.A.; D’Aversa, G.; Chevalier, P.; Shi, Z.; Chen, W.T.; Capasso, F. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science 2019, 365, eaax1839. [Google Scholar] [CrossRef] [PubMed]
- Neubrech, F.; Hentschel, M.; Liu, N. Reconfigurable Plasmonic Chirality: Fundamentals and Applications. Adv. Mater. 2020, 32, e1905640. [Google Scholar] [CrossRef]
- Zhen, Y.; Deng, J.; Bu, Y.; Dai, X. Recent advances in on-chip infrared polarization detection. J. Infrared Millim. Waves 2024, 43, 52–62. [Google Scholar]
- Ishii, A.; Miyasaka, T. Direct detection of circular polarized light in helical 1D perovskite-based photodiode. Sci. Adv. 2020, 6, eabd3274. [Google Scholar] [CrossRef]
- Liang, N.; Cao, C.; Xie, Z.; Liu, J.; Feng, Y.; Yao, C.-J. Advances in near-infrared circularly polarized luminescence with organometallic and small organic molecules. Mater. Today 2024, 75, 309–333. [Google Scholar] [CrossRef]
- Chen, G.; Liu, X.; An, J.; Wang, S.; Zhao, X.; Gu, Z.; Yuan, C.; Xu, X.; Bao, J.; Hu, H.-S.; et al. Nucleation-mediated growth of chiral 3D organic–inorganic perovskite single crystals. Nat. Chem. 2023, 15, 1581–1590. [Google Scholar] [CrossRef]
- Long, M.; Wang, P.; Fang, H.; Hu, W. Progress, Challenges, and Opportunities for 2D Material Based Photodetectors. Adv. Funct. Mater. 2018, 29, 1803807. [Google Scholar] [CrossRef]
- Low, T.; Chaves, A.; Caldwell, J.D.; Kumar, A.; Fang, N.X.; Avouris, P.; Heinz, T.F.; Guinea, F.; Martin-Moreno, L.; Koppens, F. Polaritons in layered two-dimensional materials. Nat. Mater. 2017, 16, 182–194. [Google Scholar] [PubMed]
- Wang, Y.; Huang, D.; Xia, M.; Zhou, J.; Chen, Y.; Liao, Y.; Zhang, X. Directional Chiral Exciton Emission via Topological Polarization Singularities in all Van der Waals Metasurfaces. Adv. Mater. 2025, 37, e2414174. [Google Scholar] [CrossRef]
- Basov, D.N.; Fogler, M.M.; Garcia de Abajo, F.J. Polaritons in van der Waals materials. Science 2016, 354, aag1992. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Qiu, M.; Cao, Z.; Zhou, J.; Ong, H.C.; Jin, W.; Du, J.; Lei, D. High-Q Circular Dichroism Resonances in Plasmonic Lattices with Chiral Unit Cells. Adv. Funct. Mater. 2022, 32, 2204095. [Google Scholar]
- Zhou, J.; Deng, J.; Shi, M. Cavity coupled plasmonic resonator enhanced infrared detectors. Appl. Phys. Lett. 2021, 119, 160504. [Google Scholar]
- Kong, X.T.; Khosravi Khorashad, L.; Wang, Z.; Govorov, A.O. Photothermal Circular Dichroism Induced by Plasmon Resonances in Chiral Metamaterial Absorbers and Bolometers. Nano Lett. 2018, 18, 2001–2008. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Coppens, Z.J.; Besteiro, L.V.; Wang, W.; Govorov, A.O.; Valentine, J. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat. Commun. 2015, 6, 8379. [Google Scholar]
- Ali, H.; Zanotti, S.; Pellegrini, G.; Petronijevic, E.; Andreani, L.C. Maximum Chirality Empowered by a Bound State in a Continuum in a Plasmonic Metasurface. ACS Appl. Opt. Mater. 2024, 2, 825–833. [Google Scholar]
- Gryb, D.; Wendisch, F.J.; Aigner, A.; Golz, T.; Tittl, A.; de S Menezes, L.; Maier, S.A. Two-Dimensional Chiral Metasurfaces Obtained by Geometrically Simple Meta-atom Rotations. Nano Lett. 2023, 23, 8891–8897. [Google Scholar]
- Kuhner, L.; Wendisch, F.J.; Antonov, A.A.; Burger, J.; Huttenhofer, L.; de S Menezes, L.; Maier, S.A.; Gorkunov, M.V.; Kivshar, Y.; Tittl, A. Unlocking the out-of-plane dimension for photonic bound states in the continuum to achieve maximum optical chirality. Light Sci. Appl. 2023, 12, 250. [Google Scholar] [CrossRef]
- Guan, T.; Wang, Z.; Wang, R.; Wu, Z.; Wang, C.; Wu, D.; Chu, J.; Chen, Y. Ultrasensitive circular dichroism spectroscopy based on coupled quasi-bound states in the continuum. Nanophotonics 2025. [Google Scholar] [CrossRef]
- Gorkunov, M.V.; Antonov, A.A.; Kivshar, Y.S. Metasurfaces with Maximum Chirality Empowered by Bound States in the Continuum. Phys. Rev. Lett. 2020, 125, 093903. [Google Scholar] [CrossRef]
- Kuznetsov, A.I.; Brongersma, M.L.; Yao, J.; Chen, M.K.; Levy, U.; Tsai, D.P.; Zheludev, N.I.; Faraon, A.; Arbabi, A.; Yu, N.; et al. Roadmap for Optical Metasurfaces. ACS Photonics 2024, 11, 816–865. [Google Scholar] [CrossRef]
- Chu, Z.; Zhou, J.; Dai, X.; Li, F.; Lan, M.; Ji, Z.; Lu, W.; Chen, X. Circular Polarization Discrimination Enhanced by Anisotropic Media. Adv. Opt. Mater. 2020, 8, 1901800. [Google Scholar] [CrossRef]
- Ouyang, L.; Wang, W.; Rosenmann, D.; Czaplewski, D.A.; Gao, J.; Yang, X. Near-infrared chiral plasmonic metasurface absorbers. Opt. Express 2018, 26, 31484–31489. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Ren, M.; Wu, W.; Yu, D.; Cai, W.; Xu, J. Phase-Transition Optical Activity in Chiral Metamaterials. Phys. Rev. Lett. 2020, 125, 237401. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Chu, Z.; Zhou, J.; Deng, J. Compact on-chip THz circular polarization detectors with high discrimination based on chiral plasmonic antennas. Opt. Mater. Express 2023, 13, 3330–3341. [Google Scholar] [CrossRef]
- Li, F.; Zhou, J.; Deng, J.; Shen, J. Enhanced THz Circular-Polarization Detection in Miniaturized Chips with Chiral Antennas. Photonics 2024, 11, 162. [Google Scholar] [CrossRef]
- Chen, C.; Gao, L.; Gao, W.; Ge, C.; Du, X.; Li, Z.; Yang, Y.; Niu, G.; Tang, J. Circularly polarized light detection using chiral hybrid perovskite. Nat. Commun. 2019, 10, 1927. [Google Scholar] [CrossRef]
- Liu, T.; Shi, W.; Tang, W.; Liu, Z.; Schroeder, B.C.; Fenwick, O.; Fuchter, M.J. High Responsivity Circular Polarized Light Detectors based on Quasi Two-Dimensional Chiral Perovskite Films. ACS Nano 2022, 16, 2682–2689. [Google Scholar] [CrossRef]
- Liu, L.; Yang, Y.; Zhu, L.; Zhang, J.; Chen, K.; Wei, Z. Chiral Non-Fullerene Acceptor Enriched Bulk Heterojunctions Enable High-Performance Near-Infrared Circularly Polarized Light Detection. Small 2022, 18, e2202941. [Google Scholar] [PubMed]
- Wan, L.; Zhang, R.; Cho, E.; Li, H.; Coropceanu, V.; Brédas, J.-L.; Gao, F. Sensitive near-infrared circularly polarized light detection via non-fullerene acceptor blends. Nat. Photonics 2023, 17, 649–655. [Google Scholar]
- Xu, S.-Y.; Ma, Q.; Shen, H.; Fatemi, V.; Wu, S.; Chang, T.-R. Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2. Nat. Phys. 2018, 14, 900–906. [Google Scholar] [CrossRef]
- Osterhoudt, G.B.; Diebel, L.K.; Gray, M.J.; Yang, X.; Stanco, J.; Huang, X.; Shen, B.; Ni, N.; Moll, P.J.W.; Ran, Y.; et al. Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal. Nat. Mater. 2019, 18, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Li, J.; Zhou, B.; Li, D. Self-Powered Filterless On-Chip Full-Stokes Polarimeter. Nano Lett. 2021, 21, 6156–6162. [Google Scholar] [CrossRef]
- Ma, J.; Cheng, B.; Li, L.; Fan, Z.; Mu, H.; Lai, J.; Song, X.; Yang, D.; Cheng, J.; Wang, Z.; et al. Unveiling Weyl-related optical responses in semiconducting tellurium by mid-infrared circular photogalvanic effect. Nat. Commun. 2022, 13, 5425. [Google Scholar] [CrossRef]
- Yoo, S.; Park, Q.H. Metamaterials and chiral sensing: A review of fundamentals and applications. Nanophotonics 2019, 8, 249–261. [Google Scholar] [CrossRef]
- Shen, J.; Zhu, T.; Zhou, J.; Chu, Z.; Ren, X.; Deng, J.; Dai, X.; Li, F.; Wang, B.; Chen, X.; et al. High-Discrimination Circular Polarization Detection Based on Dielectric-Metal-Hybrid Chiral Metamirror Integrated Quantum Well Infrared Photodetectors. Sensors 2022, 23, 168. [Google Scholar] [CrossRef]
- Wang, C.; Wang, R.; Cheng, X.; Hu, X.; Wang, C. Passively Broadband Tunable Dual Circular Dichroism via Bound States in the Continuum in Topological Chiral Metasurface. ACS Nano 2024, 18, 18922–18932. [Google Scholar]
- Wu, Z.; Zheng, Y. Moiré Chiral Metamaterials. Adv. Opt. Mater. 2017, 5, 1700034. [Google Scholar]
- Shi, T.; Deng, Z.L.; Geng, G.; Zeng, X.; Zeng, Y.; Hu, G.; Overvig, A.; Li, J.; Qiu, C.W.; Alu, A.; et al. Planar chiral metasurfaces with maximal and tunable chiroptical response driven by bound states in the continuum. Nat. Commun. 2022, 13, 4111. [Google Scholar] [PubMed]
- Chen, Y.; Deng, H.; Sha, X.; Chen, W.; Wang, R.; Chen, Y.H.; Wu, D.; Chu, J.; Kivshar, Y.S.; Xiao, S.; et al. Observation of intrinsic chiral bound states in the continuum. Nature 2023, 613, 474–478. [Google Scholar] [PubMed]
- Lyu, B.; Li, Y.; Jia, Q.; Li, H.; Yang, G.; Cao, F.; Kou, S.; Liu, D.; Cao, T.; Li, G.; et al. Manipulating the Chirality of Moiré Metasurface by Symmetry Breaking. Laser Photonics Rev. 2023, 17, 2201004. [Google Scholar] [CrossRef]
- Sha, X.; Du, K.; Zeng, Y.; Lai, F.; Yin, J.; Zhang, H.; Song, B.; Han, J.; Xiao, S.; Kivshar, Y.; et al. Chirality tuning and reversing with resonant phase-change metasurfaces. Sci. Adv. 2024, 10, eadn9017. [Google Scholar]
- Chen, W.; Wang, Z.; Gorkunov, M.V.; Qin, J.; Wang, R.; Wang, C.; Wu, D.; Chu, J.; Wang, X.; Kivshar, Y.; et al. Uncovering Maximum Chirality in Resonant Nanostructures. Nano Lett. 2024, 24, 9643–9649. [Google Scholar]
- Qin, C.; Deng, Y.; Lyu, T.; Meng, C.; Im Sande, S.; Bozhevolnyi, S.I.; Shi, J.; Ding, F. Rotation-induced plasmonic chiral quasi-bound states in the continuum. Photonics Res. 2024, 13, 69–79. [Google Scholar]
- Zhou, J.; Wang, Y.; Xia, M.; Chen, Y.; Huang, D.; Zhang, X. Excitonic van der Waals Metasurfaces for Resonant Wavefront Shaping at Deep Subwavelength Thickness Scale. Nano Lett. 2024, 24, 9658–9665. [Google Scholar] [PubMed]
- Gansel, J.K.; Latzel, M.; Frölich, A.; Kaschke, J.; Thiel, M.; Wegener, M. Tapered gold-helix metamaterials as improved circular polarizers. Appl. Phys. Lett. 2012, 100, 101109. [Google Scholar]
- Mark, A.G.; Gibbs, J.G.; Lee, T.C.; Fischer, P. Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nat. Mater. 2013, 12, 802–807. [Google Scholar]
- Cui, Y.; Kang, L.; Lan, S.; Rodrigues, S.; Cai, W. Giant chiral optical response from a twisted-arc metamaterial. Nano Lett. 2014, 14, 1021–1025. [Google Scholar]
- Pfeiffer, C.; Zhang, C.; Ray, V.; Guo, L.J.; Grbic, A. High performance bianisotropic metasurfaces: Asymmetric transmission of light. Phys. Rev. Lett. 2014, 113, 023902. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Rodrigues, S.P.; Taghinejad, M.; Lan, S.; Lee, K.T.; Liu, Y.; Werner, D.H.; Urbas, A.; Cai, W. Preserving Spin States upon Reflection: Linear and Nonlinear Responses of a Chiral Meta-Mirror. Nano Lett. 2017, 17, 7102–7109. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Plum, E.; Yang, Q.; Zhang, X.; Xu, Q.; Xu, Y.; Han, J.; Zhang, W. Reflective chiral meta-holography: Multiplexing holograms for circularly polarized waves. Light Sci. Appl. 2018, 7, 25. [Google Scholar] [CrossRef]
- Afshinmanesh, F.; White, J.S.; Cai, W.; Brongersma, M.L. Measurement of the polarization state of light using an integrated plasmonic polarimeter. Nanophotonics 2012, 1, 125–129. [Google Scholar] [CrossRef]
- Peng, J.; Cumming, B.P.; Gu, M. Direct detection of photon spin angular momentum by a chiral graphene mid-infrared photodetector. Opt. Lett. 2019, 44, 2998–3001. [Google Scholar] [CrossRef]
- Jiang, Q.; Du, B.; Jiang, M.; Liu, D.; Liu, Z.; Li, B.; Liu, Z.; Lin, F.; Zhu, X.; Fang, Z. Ultrathin circular polarimeter based on chiral plasmonic metasurface and monolayer MoSe(2). Nanoscale 2020, 12, 5906–5913. [Google Scholar] [CrossRef]
- Gansel, J.K.; Thiel, M.; Rill, M.S.; Decker, M.; Bade, K.; Saile, V.; von Freymann, G.; Linden, S.; Wegener, M. Gold helix photonic metamaterial as broadband circular polarizer. Science 2009, 325, 1513–1515. [Google Scholar] [CrossRef]
- Esposito, M.; Tasco, V.; Todisco, F.; Cuscunà, M.; Benedetti, A.; Sanvitto, D.; Passaseo, A. Triple-helical nanowires by tomographic rotatory growth for chiral photonics. Nat. Commun. 2015, 6, 6484. [Google Scholar] [CrossRef]
- Zhao, Y.; Belkin, M.A.; Alu, A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat. Commun. 2012, 3, 870. [Google Scholar] [CrossRef]
- Wang, Z.; Jia, H.; Yao, K.; Cai, W.; Chen, H.; Liu, Y. Circular Dichroism Metamirrors with Near-Perfect Extinction. ACS Photonics 2016, 3, 2096–2101. [Google Scholar] [CrossRef]
- Li, Z.; Liu, W.; Cheng, H.; Choi, D.Y.; Chen, S.; Tian, J. Spin-Selective Full-Dimensional Manipulation of Optical Waves with Chiral Mirror. Adv. Mater. 2020, 32, e1907983. [Google Scholar]
- Kang, L.; Wang, C.Y.; Guo, X.; Ni, X.; Liu, Z.; Werner, D.H. Nonlinear Chiral Meta-Mirrors: Enabling Technology for Ultrafast Switching of Light Polarization. Nano Lett. 2020, 20, 2047–2055. [Google Scholar] [PubMed]
- Bansal, S.; Singh, A.K.; Das, A.; Jain, P.; Prakash, K.; Sharma, K.; Kumar, N.; Sardana, N.; Gupta, N.; Kumar, S. Enhanced Optoelectronic Properties of Bilayer Graphene/HgCdTe-Based Single- and Dual-Junction Photodetectors in Long Infrared Regime. IEEE Trans. Nanotechnol. 2019, 18, 781–789. [Google Scholar] [CrossRef]
- Bansal, S.; Prakash, K.; Sharma, K.; Sardana, N.; Kumar, S.; Gupta, N.; Singh, A.K. A highly efficient bilayer graphene/ZnO/silicon nanowire based heterojunction photodetector with broadband spectral response. Nanotechnology 2020, 31, 405205. [Google Scholar] [CrossRef]
- Bu, Y.; Ren, X.; Zhou, J.; Zhang, Z.; Deng, J.; Xu, H.; Xie, R.; Li, T.; Hu, W.; Guo, X.; et al. Configurable circular-polarization-dependent optoelectronic silent state for ultrahigh light ellipticity discrimination. Light Sci. Appl. 2023, 12, 176. [Google Scholar] [PubMed]
- Liu, Z.; Gao, H.; Ma, T.; Ray, V.; Liu, N.; Zhang, X.; Guo, L.J.; Zhang, C. Broadband spin and angle co-multiplexed waveguide-based metasurface for six-channel crosstalk-free holographic projection. eLight 2024, 4, 7. [Google Scholar]
- Martin, J.P.; Joseph, C.S.; Giles, R.H. Continuous-wave circular polarization terahertz imaging. J. Biomed. Opt. 2016, 21, 70502. [Google Scholar]
- Nishizawa, N.; Al-Qadi, B.; Kuchimaru, T. Angular optimization for cancer identification with circularly polarized light. J. Biophotonics 2021, 14, e202000380. [Google Scholar] [CrossRef]
- Hu, H.; Zhao, L.; Li, X.; Wang, H.; Yang, J.; Li, K.; Liu, T. Polarimetric image recovery in turbid media employing circularly polarized light. Opt. Express 2018, 26, 25047–25059. [Google Scholar] [CrossRef]
- Wang, Y.; Du, F.; Ma, J.; Tan, L. Employing circle polarization shift keying in free space optical communication with gamma–gamma atmospheric turbulence channel. Opt. Commun. 2014, 333, 167–174. [Google Scholar]
- Flamini, F.; Spagnolo, N.; Sciarrino, F. Photonic quantum information processing: A review. Rep. Prog. Phys. 2019, 82, 016001. [Google Scholar] [CrossRef]
- Zhao, Y.; Qiu, Y.; Feng, J.; Zhao, J.; Chen, G.; Gao, H.; Zhao, Y.; Jiang, L.; Wu, Y. Chiral 2D-Perovskite Nanowires for Stokes Photodetectors. J. Am. Chem. Soc. 2021, 143, 8437–8445. [Google Scholar]
- Zuo, J.; Bai, J.; Choi, S.; Basiri, A.; Chen, X.; Wang, C.; Yao, Y. Chip-integrated metasurface full-Stokes polarimetric imaging sensor. Light Sci. Appl. 2023, 12, 218. [Google Scholar] [PubMed]
- Li, H.; Zhao, C.; Li, J.; Zheng, C.; Xu, H.; Xu, W.; Tan, Q.; Song, C.; Shen, Y.; Yao, J. Broadband all-dielectric meta-lenses with terahertz full-Stokes polarization detection behavior. Opt. Express 2024, 32, 37916–37927. [Google Scholar]
- Bai, J.; Wang, C.; Chen, X.; Basiri, A.; Wang, C.; Yao, Y. Chip-integrated plasmonic flat optics for mid-infrared full-Stokes polarization detection. Photonics Res. 2019, 7, 1051–1060. [Google Scholar]
- Li, L.; Wang, J.; Kang, L.; Liu, W.; Yu, L.; Zheng, B.; Brongersma, M.L.; Werner, D.H.; Lan, S.; Shi, Y.; et al. Monolithic Full-Stokes Near-Infrared Polarimetry with Chiral Plasmonic Metasurface Integrated Graphene-Silicon Photodetector. ACS Nano 2020, 14, 16634–16642. [Google Scholar] [PubMed]
- Lee, K.; Yun, H.; Mun, S.E.; Lee, G.Y.; Sung, J.; Lee, B. Ultracompact Broadband Plasmonic Polarimeter. Laser Photonics Rev. 2018, 12, 1700297. [Google Scholar]
- Shen, J.; Zhou, J.; Zhu, T.; Deng, J.; Wang, B.; Jing, W.; Ma, J.; Qin, X.; Liu, H.; Li, J.; et al. On-chip long-wavelength infrared polarimeter for full-Stokes polarization detection. Opt. Mater. Express 2023, 13, 2475–2488. [Google Scholar]
- Arbabi, E.; Kamali, S.M.; Arbabi, A.; Faraon, A. Full-Stokes Imaging Polarimetry Using Dielectric Metasurfaces. ACS Photonics 2018, 5, 3132–3140. [Google Scholar]
- Ma, J.; Fang, C.; Liang, L.; Wang, H.; Li, D. Full-Stokes Polarimeter Based on Chiral Perovskites with Chirality and Large Optical Anisotropy. Small 2021, 17, e2103855. [Google Scholar]
- Ma, C.; Yuan, S.; Cheung, P.; Watanabe, K.; Taniguchi, T.; Zhang, F.; Xia, F. Intelligent infrared sensing enabled by tunable moire quantum geometry. Nature 2022, 604, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Dai, M.; Wang, C.; Qiang, B.; Wang, F.; Ye, M.; Han, S.; Luo, Y.; Wang, Q.J. On-chip mid-infrared photothermoelectric detectors for full-Stokes detection. Nat. Commun. 2022, 13, 4560. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Shi, M.; Wang, R.; Zhen, Y.; Ni, Z.; Gao, W.; Liu, X.; Dai, X.; Zhou, J.; Chen, Y.; et al. An on-chip full-Stokes polarimeter based on optoelectronic polarization eigenvectors. Nat. Electron. 2024, 1–11, 1004–1014. [Google Scholar] [CrossRef]
- Bansal, S.; Rajpoot, A.K.; Chamundeswari, G.; Prakash, K.; Kumar, P.R.; Rashed, A.N.Z.; Soliman, M.S.; Islam, M.T. Pt/ZnO and Pt/few-layer graphene/ZnO Schottky devices with Al ohmic contacts using Atlas simulation and machine learning. J. Sci. Adv. Mater. Devices 2024, 9, 100798. [Google Scholar] [CrossRef]
Devices Structure | CPER | Responsivity | λ | Ref. |
---|---|---|---|---|
Organic–inorganic hybrid (α-PEA) PbI3 perovskites | 1.1 | 0.795 A W−1 | 395 nm | [41] |
(NEA)2(MA)n-1PbnI3n+1 perovskite | 1.16 | 15.7 A W−1 | 405 nm | [42] |
Chiral nonfullerene acceptor enriched BHJs | 1.02 | 0.4 A W−1 | 830 nm | [43] |
Non-fullerene acceptor blends | 1.09 | 0.4 A W−1 | 700 nm | [44] |
Monolayer WTe2 | 3.56 | 41 nA W−1 | 10.6 μm | [45] |
TaAs | 1.72 | − | 10.6 μm | [46] |
Single-layer MoS2/few-layer MoS2 homojunction | 1.1 | 0.28 A W−1 | 670 nm | [47] |
Te | 1.80/1.47 | − | 4.0 μm/10.6 μm | [48] |
Double-sided scythe α-Si/SiO2 | 27.6 | − | 1.42 μm | [53] |
TiO2 slant-perturbation metasurface | 13.4 | − | 618 nm | [54] |
Bilayer gold nanorod twisted Moiré metasurface | 9.5 | − | 1224 nm | [55] |
Sb2S3/polyimide/Si metasurface/SiO2 | 46.6 | − | 1518 nm | [56] |
Au bricks/SiO2/Au | 2.1 | − | 920 nm | [58] |
Gold helices | 9.3 | − | 3.5 μm | [69] |
Twisted gold metamaterials | 1.9 | − | 780 nm | [71] |
Al chiral mirror/SiO2/Al | 4.5 | − | 1400 nm | [73] |
α-Si chiral mirror/SiO2/Ag | 2.3 | 1530 nm | [74] | |
MoS2/Au z-antenna/SiO2/Au | ~1.5 × 105 | 0.4 mA W−1 | 1.48 μm | [77] |
Single-crystalline nanowire arrays of chiral 2D perovskites | 1.2 | 47.1 A W−1 | 505 nm | [84] |
MetaPolarIm | 20 | − | 650 nm | [85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, T.; Jing, W.; Deng, J.; Zhang, Y.; Ye, J.; Zhou, J.; Chen, X. Integrated Circular Polarization Detectors Based on Asymmetric Materials or Structures. Symmetry 2025, 17, 484. https://doi.org/10.3390/sym17040484
Zhu T, Jing W, Deng J, Zhang Y, Ye J, Zhou J, Chen X. Integrated Circular Polarization Detectors Based on Asymmetric Materials or Structures. Symmetry. 2025; 17(4):484. https://doi.org/10.3390/sym17040484
Chicago/Turabian StyleZhu, Tianyun, Wenji Jing, Jie Deng, Yujie Zhang, Jiexian Ye, Jing Zhou, and Xiaoshuang Chen. 2025. "Integrated Circular Polarization Detectors Based on Asymmetric Materials or Structures" Symmetry 17, no. 4: 484. https://doi.org/10.3390/sym17040484
APA StyleZhu, T., Jing, W., Deng, J., Zhang, Y., Ye, J., Zhou, J., & Chen, X. (2025). Integrated Circular Polarization Detectors Based on Asymmetric Materials or Structures. Symmetry, 17(4), 484. https://doi.org/10.3390/sym17040484