A Note on Generalized Parabolic Marcinkiewicz Integrals with Grafakos–Stefanov Kernels
Abstract
:1. Introduction
2. Auxiliary Lemmas
3. Proof of Theorem 1
- (i)
- For and ,
- (ii)
- For and ,
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fabes, E.; Riviére, N. Singular integrals with mixed homogeneity. Studia Math. 1966, 27, 19–38. [Google Scholar] [CrossRef]
- Stein, E. On the functions of Littlewood-Paley, Lusin and Marcinkiewicz. Trans. Amer. Math. Soc. 1958, 88, 430–466. [Google Scholar] [CrossRef]
- Stein, E. Problems in harmonic analysis related to curvature and oscillatory integrals. In Proceedings of the International Congress of Mathematicians, Berkeley, CA, USA, 3–11 August 1986; Volume 1, pp. 196–221. [Google Scholar]
- Stein, E. Some geometrical concepts arising in harmonic analysis. Geom. Funct. Anal. 2011, 1, 434–453. [Google Scholar]
- Walsh, T. On the function of Marcinkiewicz. Studia Math. 1972, 44, 203–217. [Google Scholar] [CrossRef]
- Al-Salman, A.; Al-Qassem, H.; Cheng, L.; Pan, Y. Lp bounds for the function of Marcinkiewicz. Math. Res. Lett. 2002, 9, 697–700. [Google Scholar]
- Al-Qassem, H.; Al-Salman, A. A note on Marcinkiewicz integral operators. J. Math. Anal. Appl. 2003, 282, 698–710. [Google Scholar] [CrossRef]
- Chen, J.; Fan, D.; Pan, Y. A note on a Marcinkiewicz integral operator. Math. Nachr. 2001, 227, 33–42. [Google Scholar] [CrossRef]
- Hörmander, L. Estimates for translation invariant operators in Lp space. Acta Math. 1960, 104, 93–139. [Google Scholar] [CrossRef]
- Ding, Y.; Lu, S.; Yabuta, K. A problem on rough parametric Marcinkiewicz functions. J. Aust. Math. Soc. 2002, 72, 13–21. [Google Scholar] [CrossRef]
- Sakamota, M.; Yabuta, K. Boundedness of Marcinkiewicz functions. Studia Math. 1999, 135, 103–142. [Google Scholar]
- Torchinsky, A.; Wang, S. A note on the Marcinkiewicz integral. Colloq. Math. 1990, 61, 235–243. [Google Scholar] [CrossRef]
- Ali, M. Lp Estimates for Marcinkiewicz Integral Operators and Extrapolation. J. Ineq. Appl. 2014, 1, 269. [Google Scholar] [CrossRef]
- Liu, F.; Fu, Z.; Jhang, S. Boundedness and continuity of Marcinkiewicz integrals associated to homogeneous mappings on Triebel-Lizorkin spaces. Front. Math. China 2019, 14, 95–122. [Google Scholar] [CrossRef]
- Xue, Q.; Ding, Y.; Yabuta, K. Parabolic Littlewood-Paley g-function with rough kernels. Acta Math. Sin. (Engl. Ser.) 2008, 24, 2049–2060. [Google Scholar] [CrossRef]
- Chen, Y.; Ding, Y. Lp Bounds for the parabolic Marcinkiewicz integral with rough kernels. J. Korean Math. Soc. 2007, 44, 733–745. [Google Scholar] [CrossRef]
- Al-Salman, A. A note on parabolic Marcinkiewicz integrals along surfaces. Trans. A Razmadze Math. Inst. 2010, 154, 21–36. [Google Scholar]
- Wang, F.; Chen, Y.; Yu, W. Lp bounds for the parabolic Littlewood-Paley operator associated to surfaces of revolution. Bull. Korean Math. Soc. 2012, 29, 787–797. [Google Scholar] [CrossRef]
- Liu, F. A note on Marcinkiewicz integral associated to surfaces of revolution. J. Aust. Math. Soc. 2018, 104, 380–402. [Google Scholar] [CrossRef]
- Ali, M.; Katatbeh, Q. Generalized parabolic Marcinkiewicz integrals associated with polynomial compound curves with rough kernels. Demon. Math. 2020, 53, 44–57. [Google Scholar] [CrossRef]
- Liu, F.; Mao, S. Lp bounds for nonisotropic Marcinkiewicz integrals associated to surfaces. J. Aust. Math. Soc. 2015, 99, 380–398. [Google Scholar] [CrossRef]
- Zhang, J.; He, Q.; Xue, Q. On weighted boundedness and compactness of commutators of Marcinkiewicz integral associated with Schrödinger operators. Ann. Func. Anal. 2023, 14, 59. [Google Scholar] [CrossRef]
- Gao, W.; Tang, L. BLO estimates for Marcinkiewicz integrals associated with Schrödinger operators. Proc. Indian Acad. Sci. Math. Sci. 2019, 129, 1–10. [Google Scholar] [CrossRef]
- Gürbüz, F. A note concerning Marcinkiewicz integral with rough kernel. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2021, 24, 53. [Google Scholar] [CrossRef]
- Khalil, O.; Tao, S.; Bechi, A. Boundedness of Marcinkiewicz integral with rough kernel and their commutator on weighted Herz space with variable exponent. Acta Math. Univ. Comen. 2023, 2, 145–163. [Google Scholar]
- Jia, H.; Yang, D.; Yuan, W.; Zhang, Y. Estimates for Littlewood–Paley operators on ball Campanato-type function spaces. Results Math. 2023, 78, 1–37. [Google Scholar] [CrossRef]
- Ayman-Mursaleen, M.; Nasiruzzaman, M.; Sharma, S.; Cai, Q. Invariant means and lacunary sequencespaces of order (α, β). Demonstr. Math. 2024, 57, 1–12. [Google Scholar]
- Rao, N.; Ayman-Mursaleen, M.; Aslan, R. A note on a general sequence of λ-Szász Kantorovich type operators. Comput. Appl. Math. 2024, 43, 428. [Google Scholar] [CrossRef]
- Ayman-Mursaleen, M.; Nasiruzzaman, M.; Rao, N.; Dilshad, M.; Nisar, K. Approximation by the modified λ-Bernstein-polynomial in terms of basis function. AIMS Math. 2024, 9, 4409–4426. [Google Scholar] [CrossRef]
- Ayman-Mursaleen, M.; Lamichhane, B.; Kilicman, A.; Senu, N. On q-statistical approximation of wavelets aided Kantorovich q-Baskakov operators. FILOMAT 2024, 38, 3261–3274. [Google Scholar]
- Chen, J.; Fan, D.; Ying, Y. Singular integral operators on function spaces. J. Math. Anal. Appl. 2002, 276, 691–708. [Google Scholar] [CrossRef]
- Le, H. Singular integrals with mixed homogeneity in Triebel-Lizorkin spaces. J. Math. Anal. Appl. 2008, 345, 903–916. [Google Scholar] [CrossRef]
- Al-Qassem, H.; Cheng, L.; Pan, Y. On rough generalized parametric Marcinkiewicz integrals. J. Math. Ineq. 2017, 11, 763–780. [Google Scholar] [CrossRef]
- Al-Qassem, H.; Cheng, L.; Pan, Y. Boundedness of rough integral operators on Triebel-Lizorkin space. Publ. Mat. 2012, 56, 261–277. [Google Scholar] [CrossRef]
- Fan, D.; Wu, H. On the generalized Marcinkiewicz integral operators with rough kernels. Can. Math. Bull. 2011, 54, 100–112. [Google Scholar] [CrossRef]
- Ali, M.; Al-Mohammed, O. Boundedness of a class of rough maximal functions. J. Ineq. Appl. 2018, 305, 1900. [Google Scholar] [CrossRef]
- Liu, F. A note on generalized parametric Marcinkiewicz integrals. Bull. Korean Math. Soc. 2019, 56, 1099–1115. [Google Scholar]
- Ali, M.; Al-Qassem, H. Estimates for certain class of rough generalized Marcinkiewicz functions along submanifolds. Open Math. 2023, 21, 603. [Google Scholar] [CrossRef]
- Grafakos, L.; Stefanov, A. Lp bounds for singular integrals and maximal singular integrals with rough kernel. Indiana Univ. Math. J. 1998, 47, 455–469. [Google Scholar] [CrossRef]
- Triebel, H. Theory of Function Spaces, 1st ed.; Birkhäuser: Basel, Switzerland, 1983; pp. 1–285. [Google Scholar]
- Ricci, R.; Stein, E. Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals. J. Funct. Anal. 1987, 73, 179–194. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Qassem, H.; Ali, M. A Note on Generalized Parabolic Marcinkiewicz Integrals with Grafakos–Stefanov Kernels. Symmetry 2025, 17, 429. https://doi.org/10.3390/sym17030429
Al-Qassem H, Ali M. A Note on Generalized Parabolic Marcinkiewicz Integrals with Grafakos–Stefanov Kernels. Symmetry. 2025; 17(3):429. https://doi.org/10.3390/sym17030429
Chicago/Turabian StyleAl-Qassem, Hussain, and Mohammed Ali. 2025. "A Note on Generalized Parabolic Marcinkiewicz Integrals with Grafakos–Stefanov Kernels" Symmetry 17, no. 3: 429. https://doi.org/10.3390/sym17030429
APA StyleAl-Qassem, H., & Ali, M. (2025). A Note on Generalized Parabolic Marcinkiewicz Integrals with Grafakos–Stefanov Kernels. Symmetry, 17(3), 429. https://doi.org/10.3390/sym17030429