Hamming and Symbol-Pair Distances of Constacyclic Codes of Length 2ps over
Abstract
:1. Introduction
2. Preliminaries
3. -Constacyclic Code of Length over the Ring
- Type A: , .
- Type B: , where .
- Type C: , where , and either is 0 or is a unit that can be represented as with and .
- Type D: , where , with as in Type C.Here, . Also,
4. Hamming Distance
- Case (i): If , then .
- Case (ii): If , then . Thus, is precisely the -constacyclic code in multiplied by . Therefore, , and the proof follows from Theorem 5.
5. Symbol-Pair Distance
- Case (i): If , then .
- Case (ii): If , then . Thus, is precisely the -constacyclic code in multiplied by . Therefore, and the proof follows from Theorem 9.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Berman, S. Semisimple cyclic and abelian codes. II. Cybernetics 1967, 3, 17–23. [Google Scholar] [CrossRef]
- Lint, J.H.V. Repeated-root cyclic codes. IEEE Trans. Inf. Theory 1991, 37, 343–345. [Google Scholar] [CrossRef]
- Castagnoli, G.; Massey, J.L.; Schoeller, P.A.; Seemann, N.V. On repeated-root cyclic codes. IEEE Trans. Inf. Theory 1991, 37, 337–342. [Google Scholar] [CrossRef]
- Hammons, A.R.; Kumar, P.V.; Calderbank, A.R.; Sloane, N.J.A.; Sole, P. The -linearity of Kerdock, Preparata, Goethals and related codes. IEEE Trans. Inf. Theory 1994, 40, 301–319. [Google Scholar] [CrossRef]
- Dinh, H.Q.; Dhompongsa, S.; Sriboonchitta, S. Repeated-root constacyclic codes of prime power length over and their duals. Discret. Math. 2016, 339, 1706–1715. [Google Scholar] [CrossRef]
- Guenda, K.; Gulliver, T.A. Repeated root constacyclic codes of length mps over . J. Algebra Its Appl. 2015, 14, 1450081. [Google Scholar] [CrossRef]
- Dinh, H.Q. Constacyclic codes of length ps over . J. Algebra 2010, 324, 940–950. [Google Scholar] [CrossRef]
- Dinh, H.Q.; Wang, L.; Zhu, S. Negacyclic codes of length 2ps over . Finite Fields Their Appl. 2015, 31, 178–201. [Google Scholar] [CrossRef]
- Chen, B.; Dinh, H.Q.; Liu, H.; Wang, L. Constacyclic codes of length 2ps over . Finite Fields Their Appl. 2016, 37, 108–130. [Google Scholar] [CrossRef]
- Dinh, H.Q.; Nguyen, B.T.; Yamaka, W. Constacyclic Codes of Length 3ps Over . IEEE Access 2020, 8, 204031–204056. [Google Scholar] [CrossRef]
- Dinh, H.Q.; Nguyen, B.T.; Sriboonchitta, S. Negacyclic codes of length 4ps over and their duals. Discret. Math. 2018, 341, 1055–1071. [Google Scholar] [CrossRef]
- Dinh, H.Q.; Sharma, A.; Rani, S.; Sriboonchitta, S. Cyclic and negacyclic codes of length 4ps over . J. Algebra Its Appl. 2018, 17, 1850173. [Google Scholar] [CrossRef]
- Dinh, H.Q.; Nguyen, B.T.; Sriboonchitta, S.; Vo, T.M. On (α + uβ)-constacyclic codes of length 4ps over . J. Algebra Its Appl. 2019, 18, 1950023. [Google Scholar] [CrossRef]
- Dinh, H.Q.; Nguyen, B.T.; Sriboonchitta, S.; Vo, T.M. On a class of constacyclic codes of length 4ps over . J. Algebra Its Appl. 2019, 18, 1950022. [Google Scholar] [CrossRef]
- Yildiz, B.; Karadeniz, S. Cyclic codes over . Des. Codes Cryptogr. 2011, 58, 221–234. [Google Scholar] [CrossRef]
- Karadeniz, S.; Yildiz, B. (1 + v)-constacyclic codes over . J. Frankl. Inst. 2011, 348, 2625–2632. [Google Scholar] [CrossRef]
- Yu, H.; Zhu, S.; Kai, X. (1 − uv)-constacyclic codes over . J. Systems Sci. Complex. 2014, 27, 811–816. [Google Scholar] [CrossRef]
- Ghosh, B. Negacyclic codes of odd length over the ring . arXiv 2015, arXiv:1501.07431. [Google Scholar]
- Bag, T.; Pathak, S.; Upadhyay, A.K. Classes of constacyclic codes of length ps over the ring . Beiträge Algebra Geom. 2019, 60, 693–707. [Google Scholar] [CrossRef]
- Dougherty, S.T.; Karadeniz, S.; Yildiz, B. Cyclic codes over Rk. Des. Codes Cryptogr. 2012, 63, 113–126. [Google Scholar] [CrossRef]
- Sobhani, R.; Molakarimi, M. Some results on cyclic codes over the ring R2,m. Turk. J. Math. 2013, 37, 1061–1074. [Google Scholar] [CrossRef]
- Dinh, H.Q.; Kewat, P.K.; Kushwaha, S.; Yamaka, W. On constacyclic codes of length ps over . Discret. Math. 2020, 343, 111890. [Google Scholar] [CrossRef]
- Ahendouz, Y.; Akharraz, I. A class of constacyclic codes of length 2ps over . Gulf J. Math. 2024, 17, 73–90. [Google Scholar] [CrossRef]
- Ali, S.; Alali, A.S.; Wong, K.B.; Oztas, E.S.; Sharma, P. Cyclic codes over non-chain ring and their applications to quantum and DNA codes. AIMS Math. 2024, 9, 7396–7413. [Google Scholar] [CrossRef]
- Benjwal, S.; Bhaintwal, M.; Kumar, R. On quantum codes derived from quasi-cyclic codes over a non-chain ring. Quantum Inf. Process. 2024, 23, 309. [Google Scholar] [CrossRef]
- Rai, P.; Singh, B.; Gupta, A.J. Quantum and LCD codes from skew constacyclic codes over a general class of non-chain rings. Quantum Inf. Process. 2024, 23, 276. [Google Scholar] [CrossRef]
- Yadav, S.; Singh, A.; Islam, H.; Prakash, O.; Solé, P. Hermitian hull of constacyclic codes over a class of non-chain rings and new quantum codes. Comput. Appl. Math. 2024, 43, 269. [Google Scholar] [CrossRef]
- MacWilliams, F.J.; Sloane, N.J.A. The Theory of Error-Correcting Codes, 10th ed.; Elsevier: Amsterdam, The Netherlands, 1977. [Google Scholar]
- Dinh, H.Q.; Nguyen, B.T.; Singh, A.K.; Sriboonchitta, S. Hamming and Symbol-Pair Distances of Repeated-Root Constacyclic Codes of Prime Power Lengths Over . IEEE Commun. Lett. 2018, 22, 2400–2403. [Google Scholar] [CrossRef]
- Dinh, H.Q.; Gaur, A.; Gupta, I.; Singh, A.K.; Singh, M.K.; Tansuchat, R. Hamming distance of repeated-root constacyclic codes of length 2ps over . Appl. Algebra Eng. Comput. 2020, 31, 291–305. [Google Scholar] [CrossRef]
- Dinh, H.Q.; Nguyen, B.T.; Thi, H.L.; Yamaka, W. On Hamming distance distributions of repeated-root constacyclic codes of length 3ps over . Discret. Math. 2023, 346, 113593. [Google Scholar] [CrossRef]
- Dinh, H.Q.; Kewat, P.K.; Kushwaha, S.; Yamaka, W. Self-dual constacyclic codes of length 2s over the ring . J. Appl. Math. Comput. 2022, 68, 431–459. [Google Scholar] [CrossRef]
- Cassuto, Y.; Blaum, M. Codes for symbol-pair read channels. IEEE Trans. Inf. Theory 2010, 57, 8011–8020. [Google Scholar] [CrossRef]
- Dinh, H.Q.; Wang, X.; Liu, H.; Sriboonchitta, S. On the symbol-pair distances of repeated-root constacyclic codes of length 2ps. Discret. Math. 2019, 342, 3062–3078. [Google Scholar]
- Dinh, H.Q.; Nguyen, B.T.; Singh, A.K.; Sriboonchitta, S. On the symbol-pair distance of repeated-root constacyclic codes of prime power lengths. IEEE Trans. Inf. Theory 2017, 64, 2417–2430. [Google Scholar] [CrossRef]
- Sun, Z.; Zhu, S.; Wang, L. The symbol-pair distance distribution of a class of repeated-root cyclic codes over . Cryptogr. Commun. 2018, 10, 643–653. [Google Scholar] [CrossRef]
- Charkani, M.E.; Dinh, H.Q.; Laaouine, J.; Yamaka, W. Symbol-Pair Distance of Repeated-Root Constacyclic Codes of Prime Power Lengths over . Mathematics 2021, 9, 2554. [Google Scholar] [CrossRef]
- Chee, Y.M.; Ji, L.; Kiah, H.M.; Wang, C. Maximum distance separable codes for symbol-pair read channels. IEEE Trans. Inf. Theory 2013, 59, 7259–7267. [Google Scholar] [CrossRef]
- Kai, X.; Zhu, S.; Li, P. A construction of new MDS symbol-pair codes. IEEE Trans. Inf. Theory 2015, 61, 5828–5834. [Google Scholar] [CrossRef]
- Ding, B.; Ge, G.; Zhang, J.; Zhang, T.; Zhang, Y. New constructions of MDS symbol-pair codes. Des. Codes Cryptogr. 2018, 86, 841–859. [Google Scholar] [CrossRef]
- Dinh, H.Q.; Nguyen, B.T.; Sriboonchitta, S. MDS Symbol-Pair Cyclic Codes of Length 2ps over . IEEE Trans. Inf. Theory 2019, 66, 240–262. [Google Scholar] [CrossRef]
- Dinh, H.Q.; Kumam, P.; Kumar, P.; Satpati, S. MDS Symbol-Pair Repeated-Root Constacylic Codes of Prime Power Lengths Over . IEEE Access 2019, 7, 145039–145048. [Google Scholar] [CrossRef]
- Huffman, W.C.; Pless, V. Fundamentals of Error-Correcting Codes; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Ling, S.; Xing, C. Coding Theory: A First Course; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- López-Permouth, S.R.; Özadam, H.; Özbudak, F.; Szabo, S. Polycyclic codes over Galois rings with applications to repeated-root constacyclic codes. Finite Fields Their Appl. 2013, 19, 16–38. [Google Scholar] [CrossRef]
Ideal () | ||
---|---|---|
Type A | ||
0 | 0 | |
1 | 2 | |
Type B | ||
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
2 | 4 | |
3 | 6 | |
Type C | ||
1 | 2 | |
1 | 2 | |
1 | 2 | |
2 | 4 | |
3 | 6 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
2 | 4 | |
2 | 4 | |
Type C | ||
1 | 2 | |
1 | 2 | |
1 | 2 | |
2 | 4 | |
3 | 6 | |
Type D | ||
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
2 | 4 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
Type D | ||
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
1 | 2 | |
2 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acharya, D.; Poojary, P.; Bhatta, V.G.R.
Hamming and Symbol-Pair Distances of Constacyclic Codes of Length 2ps over
Acharya D, Poojary P, Bhatta VGR.
Hamming and Symbol-Pair Distances of Constacyclic Codes of Length 2ps over
Acharya, Divya, Prasanna Poojary, and Vadiraja G. R. Bhatta.
2025. "Hamming and Symbol-Pair Distances of Constacyclic Codes of Length 2ps over
Acharya, D., Poojary, P., & Bhatta, V. G. R.
(2025). Hamming and Symbol-Pair Distances of Constacyclic Codes of Length 2ps over