The Principle of Maximum Conformality Correctly Resolves the Renormalization-Scheme-Dependence Problem
Abstract
:Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
- The following abbreviations are used in this manuscript:
PMC | Principle of Maximum Conformality |
PMS | Principle of Minimal Sensitivity |
QED | quantum electrodynamics |
QCD | quantum chromodynamics |
pQCD | perturbative quantum chromodynamics |
BLM | Brodsky–Lepage–Mackenzie |
GML | Gell-Mann–Low |
RG | renormalization group |
RGE | renormalization-group equation |
RGI | renormalization-group invariance |
CSR | commensurate scale relation |
NLO | next-to-leading order |
UV | ultraviolet |
iCF | Intrinsic Conformality |
Appendix A. Explanations on the Stevenson’s Misuse of PMC
Appendix A.1. Brief Introduction of PMC Procedures
Appendix A.2. Comments on the Stevenson’s First Example
Appendix A.3. Comments on the Stevenson’s Second Example
“We may use the renormalization scheme (RS) choice to achieve exact conformality, with our result for being energy independent. There are several ways to do this. One is to adjust the scheme, decreasing the value until the coefficient becomes so large and negative that . The NLO result is then . Alternatively, we may make arbitrarily large, and hence a arbitrarily small; the coefficient then becomes large and positive, approaching as ; our NLO result is then . We may easily extend these stratagems to higher orders (no actual Feynman-diagram calculations are needed!) to achieve to any order.”
References
- Stevenson, P.M. ‘Maximal conformality’ does not work. Phys. Lett. B 2023, 847, 138288. [Google Scholar] [CrossRef]
- Brodsky, S.J.; Wu, X.G. Scale Setting Using the Extended Renormalization Group and the Principle of Maximum Conformality: The QCD Coupling Constant at Four Loops. Phys. Rev. D 2012, 85, 034038. [Google Scholar] [CrossRef]
- Brodsky, S.J.; Giustino, L.D. Setting the Renormalization Scale in QCD: The Principle of Maximum Conformality. Phys. Rev. D 2012, 86, 085026. [Google Scholar] [CrossRef]
- Brodsky, S.J.; Wu, X.G. Application of the Principle of Maximum Conformality to Top-Pair Production. Phys. Rev. D 2012, 86, 014021. [Google Scholar] [CrossRef]
- Brodsky, S.J.; Wu, X.G. Eliminating the Renormalization Scale Ambiguity for Top-Pair Production Using the Principle of Maximum Conformality. Phys. Rev. Lett. 2012, 109, 042002. [Google Scholar] [CrossRef]
- Mojaza, M.; Brodsky, S.J.; Wu, X.G. Systematic All-Orders Method to Eliminate Renormalization-Scale and Scheme Ambiguities in Perturbative QCD. Phys. Rev. Lett. 2013, 110, 192001. [Google Scholar] [CrossRef]
- Brodsky, S.J.; Mojaza, M.; Wu, X.G. Systematic Scale-Setting to All Orders: The Principle of Maximum Conformality and Commensurate Scale Relations. Phys. Rev. D 2014, 89, 014027. [Google Scholar] [CrossRef]
- Stevenson, P.M. Resolution of the Renormalization Scheme Ambiguity in Perturbative QCD. Phys. Lett. B 1981, 100, 61. [Google Scholar] [CrossRef]
- Stevenson, P.M. Optimized Perturbation Theory. Phys. Rev. D 1981, 23, 2916. [Google Scholar] [CrossRef]
- Celmaster, W.; Stevenson, P.M. Scale Scheme Ambiguities in the Brodsky-lepage-mackenzie Procedure. Phys. Lett. B 1983, 125, 493. [Google Scholar] [CrossRef]
- Brodsky, S.J.; Lepage, G.P.; Mackenzie, P.B. On the Elimination of Scale Ambiguities in Perturbative Quantum Chromodynamics. Phys. Rev. D 1983, 28, 228. [Google Scholar] [CrossRef]
- Braun, V.M.; Korchemsky, G.P.; Müller, D. The Uses of conformal symmetry in QCD. Prog. Part. Nucl. Phys. 2003, 51, 311. [Google Scholar] [CrossRef]
- Wu, X.G.; Ma, Y.; Wang, S.Q.; Fu, H.B.; Ma, H.H.; Brodsky, S.J.; Mojaza, M. Renormalization Group Invariance and Optimal QCD Renormalization Scale-Setting. Rept. Prog. Phys. 2015, 78, 126201. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, P.M. An Explicit Formula for the Renormalization Scheme Invariants of Perturbation Theory. Phys. Rev. D 1986, 33, 3130. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, P.M. Optimization of QCD Perturbation Theory: Results for R(e+e−) at fourth order. Nucl. Phys. B 2013, 868, 38. [Google Scholar] [CrossRef]
- Ma, Y.; Wu, X.G.; Ma, H.H.; Han, H.Y. General Properties on Applying the Principle of Minimum Sensitivity to High-order Perturbative QCD Predictions. Phys. Rev. D 2015, 91, 034006. [Google Scholar] [CrossRef]
- Stevenson, P.M. Brodsky et al’s defense does not work. arXiv 2024, arXiv:2312.11049. [Google Scholar]
- Grunberg, G. Interpretation Of The Brodsky-lepage-mackenzie Criterium. Phys. Lett. B 1984, 135, 455. [Google Scholar] [CrossRef]
- Grunberg, G. Method of effective charges and BLM criterion. Phys. Rev. D 1992, 46, 2228. [Google Scholar] [CrossRef]
- Brodsky, S.J.; Lu, H.J. Commensurate scale relations in quantum chromodynamics. Phys. Rev. D 1995, 51, 3652. [Google Scholar] [CrossRef]
- Huang, X.D.; Wu, X.G.; Yu, Q.; Zheng, X.C.; Zeng, J.; Shen, J.M. Generalized Crewther relation and a novel demonstration of the scheme independence of commensurate scale relations up to all orders. Chin. Phys. C 2021, 45, 103104. [Google Scholar] [CrossRef]
- de Breidenbach, E.C.G.S.; Petermann, A. Normalization of constants in the quanta theory. Helv. Phys. Acta 1953, 26, 499. [Google Scholar]
- Peterman, A. Renormalization Group and the Deep Structure of the Proton. Phys. Rept. 1979, 53, 157. [Google Scholar] [CrossRef]
- Brodsky, S.J.; Wu, X.G. Self-Consistency Requirements of the Renormalization Group for Setting the Renormalization Scale. Phys. Rev. D 2012, 86, 054018. [Google Scholar] [CrossRef]
- Lu, H.J.; de Melo, C.A.R.S. Dressed skeleton expansion and the coupling scale ambiguity problem. Phys. Lett. B 1991, 273, 260. [Google Scholar] [CrossRef]
- Grunberg, G.; Kataev, A.L. On Some possible extensions of the Brodsky-Lepage-MacKenzie approach beyond the next-to-leading order. Phys. Lett. B 1992, 279, 352. [Google Scholar] [CrossRef]
- Beneke, M.; Braun, V.M. Naive nonAbelianization and resummation of fermion bubble chains. Phys. Lett. B 1995, 348, 513. [Google Scholar] [CrossRef]
- Neubert, M. Scale setting in QCD and the momentum flow in Feynman diagrams. Phys. Rev. D 1995, 51, 5924. [Google Scholar] [CrossRef]
- Lovett-Turner, C.N.; Maxwell, C.J. All orders renormalon resummations for some QCD observables. Nucl. Phys. B 1995, 452, 188. [Google Scholar] [CrossRef]
- Ball, P.; Beneke, M.; Braun, V.M. Resummation of (beta0 alpha-s)**n corrections in QCD: Techniques and applications to the tau hadronic width and the heavy quark pole mass. Nucl. Phys. B 1995, 452, 563. [Google Scholar] [CrossRef]
- Brodsky, S.J.; Gabadadze, G.T.; Kataev, A.L.; Lu, H.J. The Generalized Crewther relation in QCD and its experimental consequences. Phys. Lett. B 1996, 372, 133. [Google Scholar] [CrossRef]
- Brodsky, S.J.; Ellis, J.R.; Gardi, E.; Karliner, M.; Samuel, M.A. Pade approximants, optimal renormalization scales, and momentum flow in Feynman diagrams. Phys. Rev. D 1997, 56, 6980. [Google Scholar] [CrossRef]
- Braaten, E.; Chen, Y.Q. Renormalons in electromagnetic annihilation decays of quarkonium. Phys. Rev. D 1998, 57, 4236. [Google Scholar] [CrossRef]
- Hornbostel, K.; Lepage, G.P.; Morningstar, C. Scale setting for alpha(s) beyond leading order. Phys. Rev. D 2003, 67, 034023. [Google Scholar] [CrossRef]
- Mikhailov, S.V. Generalization of BLM procedure and its scales in any order of pQCD: A Practical approach. JHEP 2007, 6, 9. [Google Scholar] [CrossRef]
- Bi, H.Y.; Wu, X.G.; Ma, Y.; Ma, H.H.; Brodsky, S.J.; Mojaza, M. Degeneracy Relations in QCD and the Equivalence of Two Systematic All-Orders Methods for Setting the Renormalization Scale. Phys. Lett. B 2015, 748, 13. [Google Scholar] [CrossRef]
- Huang, X.D.; Wu, X.G.; Zheng, X.C.; Yan, J.; Wu, Z.F.; Ma, H.H. Precise determination of the top-quark on-shell mass Mt via its scale-invariant perturbative relation to the top-quark mass . Chin. Phys. C 2024, 48, 053113. [Google Scholar] [CrossRef]
- Yan, J.; Wu, X.G.; Shen, J.M.; Huang, X.D.; Wu, Z.F. Scale-invariant total decay width Γ(H → b) using the novel method of characteristic operator. arXiv 2024, arXiv:2411.15402. [Google Scholar]
- Gell-Mann, M.; Low, F.E. Quantum electrodynamics at small distances. Phys. Rev. 1954, 95, 1300. [Google Scholar] [CrossRef]
- Wu, X.G.; Brodsky, S.J.; Mojaza, M. The Renormalization Scale-Setting Problem in QCD. Prog. Part. Nucl. Phys. 2013, 72, 44. [Google Scholar] [CrossRef]
- Wu, X.G.; Shen, J.M.; Du, B.L.; Huang, X.D.; Wang, S.Q.; Brodsky, S.J. The QCD renormalization group equation and the elimination of fixed-order scheme-and-scale ambiguities using the principle of maximum conformality. Prog. Part. Nucl. Phys. 2019, 108, 103706. [Google Scholar] [CrossRef]
- Giustino, L.D.; Brodsky, S.J.; Ratcliffe, P.G.; Wu, X.G.; Wang, S.Q. High precision tests of QCD without scale or scheme ambiguities: The 40thanniversary of the Brodsky–Lepage–Mackenzie method. Prog. Part. Nucl. Phys. 2024, 135, 104092. [Google Scholar] [CrossRef]
- Banks, T.; Zaks, A. On the Phase Structure of Vector-Like Gauge Theories with Massless Fermions. Nucl. Phys. B 1982, 196, 189. [Google Scholar] [CrossRef]
- Gardi, E.; Grunberg, G.; Karliner, M. Can the QCD running coupling have a causal analyticity structure? JHEP 1998, 7, 7. [Google Scholar] [CrossRef]
- Giustino, L.D.; Sannino, F.; Wang, S.Q.; Wu, X.G. Thrust distribution for 3-jet production from e+e− annihilation within the QCD conformal window and in QED. Phys. Lett. B 2021, 823, 136728. [Google Scholar] [CrossRef]
- Brodsky, S.J.; Huet, P. Aspects of SU(N(c)) gauge theories in the limit of small number of colors. Phys. Lett. B 1998, 417, 145. [Google Scholar] [CrossRef]
- Wu, X.G.; Shen, J.M.; Du, B.L.; Brodsky, S.J. Novel demonstration of the renormalization group invariance of the fixed-order predictions using the principle of maximum conformality and the C-scheme coupling. Phys. Rev. D 2018, 97, 094030. [Google Scholar] [CrossRef]
- Bjorken, J.D. Inequality for Backward electron-Nucleon and Muon-Nucleon Scattering at High Momentum Transfer. Phys. Rev. 1967, 163, 1767. [Google Scholar] [CrossRef]
- Bjorken, J.D. Inelastic Scattering of Polarized Leptons from Polarized Nucleons. Phys. Rev. D 1970, 1, 1376. [Google Scholar] [CrossRef]
- Broadhurst, D.J.; Kataev, A.L. Connections between deep inelastic and annihilation processes at next to next-to-leading order and beyond. Phys. Lett. B 1993, 315, 179. [Google Scholar] [CrossRef]
- Crewther, R.J. Relating inclusive e+e− annihilation to electroproduction sum rules in quantum chromodynamics. Phys. Lett. B 1997, 397, 137. [Google Scholar] [CrossRef]
- Gabadadze, G.T.; Kataev, A.L. On connection between coefficient functions for deep inelastic and annihilation processes. JETP Lett. 1995, 61, 448. [Google Scholar]
- Shen, J.M.; Wu, X.G.; Ma, Y.; Brodsky, S.J. The Generalized Scheme-Independent Crewther Relation in QCD. Phys. Lett. B 2017, 770, 494. [Google Scholar] [CrossRef]
- Deur, A.; Brodsky, S.J.; Roberts, C.D. QCD running couplings and effective charges. Prog. Part. Nucl. Phys. 2024, 134, 104081. [Google Scholar] [CrossRef]
- Deur, A.; Shen, J.M.; Wu, X.G.; Brodsky, S.J.; de Teramond, G.F. Implications of the Principle of Maximum Conformality for the QCD Strong Coupling. Phys. Lett. B 2017, 773, 98. [Google Scholar] [CrossRef]
- Boito, D.; Jamin, M.; Miravitllas, R. Scheme Variations of the QCD Coupling and Hadronic τ Decays. Phys. Rev. Lett. 2016, 117, 152001. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.M.; Wu, X.G.; Du, B.L.; Brodsky, S.J. Novel All-Orders Single-Scale Approach to QCD Renormalization Scale-Setting. Phys. Rev. D 2017, 95, 094006. [Google Scholar] [CrossRef]
- Zheng, X.C.; Wu, X.G.; Wang, S.Q.; Shen, J.M.; Zhang, Q.L. Reanalysis of the BFKL Pomeron at the next-to-leading logarithmic accuracy. JHEP 2013, 1310, 117. [Google Scholar] [CrossRef]
- Giustino, L.D.; Brodsky, S.J.; Wang, S.Q.; Wu, X.G. Infinite-order scale-setting using the principle of maximum conformality: A remarkably efficient method for eliminating renormalization scale ambiguities for perturbative QCD. Phys. Rev. D 2020, 102, 014015. [Google Scholar] [CrossRef]
- Yan, J.; Wu, Z.F.; Shen, J.M.; Wu, X.G. Precise perturbative predictions from fixed-order calculations. J. Phys. G 2023, 50, 045001. [Google Scholar] [CrossRef]
- Du, B.L.; Wu, X.G.; Shen, J.M.; Brodsky, S.J. Extending the Predictive Power of Perturbative QCD. Eur. Phys. J. C 2019, 79, 182. [Google Scholar] [CrossRef]
- Shen, J.M.; Zhou, Z.J.; Wang, S.Q.; Yan, J.; Wu, Z.F.; Wu, X.G.; Brodsky, S.J. Extending the predictive power of perturbative QCD using the principle of maximum conformality and the Bayesian analysis. Eur. Phys. J. C 2023, 83, 326. [Google Scholar] [CrossRef]
- Kramer, G.; Lampe, B. Optimized Perturbation Theory Applied to Jet Cross-sections in e+e− Annihilation. Z. Phys. C 1988, 39, 101. [Google Scholar] [CrossRef]
- Kramer, G.; Lampe, B. Jet production rates at LEP and the scale of αs. Z. Phys. A 1991, 339, 189. [Google Scholar] [CrossRef]
- Baikov, P.A.; Chetyrkin, K.G.; Kuhn, J.H. Order alpha**4(s) QCD Corrections to Z and tau Decays. Phys. Rev. Lett. 2008, 101, 012002. [Google Scholar] [CrossRef]
- Baikov, P.A.; Chetyrkin, K.G.; Kuhn, J.H.; Rittinger, J. Vector Correlator in Massless QCD at Order O() and the QED beta-function at Five Loop. JHEP 2012, 7, 17. [Google Scholar] [CrossRef]
- Baikov, P.A.; Chetyrkin, K.G.; Kuhn, J.H. Adler Function, Bjorken Sum Rule, and the Crewther Relation to Order in a General Gauge Theory. Phys. Rev. Lett. 2010, 104, 132004. [Google Scholar] [CrossRef]
- Baikov, P.A.; Chetyrkin, K.G.; Kuhn, J.H.; Rittinger, J. Adler Function, Sum Rules and Crewther Relation of Order O(): The Singlet Case. Phys. Lett. B 2012, 714, 62–65. [Google Scholar] [CrossRef]
- Ma, Y. and Wu, X.G. Renormalization scheme dependence of high-order perturbative QCD predictions. Phys. Rev. D 1979, 97, 036024. [Google Scholar] [CrossRef]
- Celmaster, W.; Gonsalves, R.J. QCD Perturbation Expansions in a Coupling Constant Renormalized by Momentum Space Subtraction. Phys. Rev. Lett. 1979, 42, 1435. [Google Scholar] [CrossRef]
- Celmaster, W.; Gonsalves, R.J. The Renormalization Prescription Dependence of the QCD Coupling Constant. Phys. Rev. D 1979, 20, 1420. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, J.; Brodsky, S.J.; Di Giustino, L.; Ratcliffe, P.G.; Wang, S.; Wu, X. The Principle of Maximum Conformality Correctly Resolves the Renormalization-Scheme-Dependence Problem. Symmetry 2025, 17, 411. https://doi.org/10.3390/sym17030411
Yan J, Brodsky SJ, Di Giustino L, Ratcliffe PG, Wang S, Wu X. The Principle of Maximum Conformality Correctly Resolves the Renormalization-Scheme-Dependence Problem. Symmetry. 2025; 17(3):411. https://doi.org/10.3390/sym17030411
Chicago/Turabian StyleYan, Jiang, Stanley J. Brodsky, Leonardo Di Giustino, Philip G. Ratcliffe, Shengquan Wang, and Xinggang Wu. 2025. "The Principle of Maximum Conformality Correctly Resolves the Renormalization-Scheme-Dependence Problem" Symmetry 17, no. 3: 411. https://doi.org/10.3390/sym17030411
APA StyleYan, J., Brodsky, S. J., Di Giustino, L., Ratcliffe, P. G., Wang, S., & Wu, X. (2025). The Principle of Maximum Conformality Correctly Resolves the Renormalization-Scheme-Dependence Problem. Symmetry, 17(3), 411. https://doi.org/10.3390/sym17030411