Development and Engineering Applications of a Novel Mixture Distribution: Exponentiated and New Topp–Leone-G Families
Abstract
:1. Introduction
2. Mixture of Exponentiated and New Topp Leone-G Family
2.1. General Properties of the Mixture of Exponentiated and New Topp–Leone-G Families
2.1.1. Quantile Function of the MENTL-G Family
2.1.2. Moments of the MENTL-G Family
- The series’ representation as ;
- The generalized binomial expansion for is a real non-integer
- Taylor expansion .
2.1.3. Moment-Generating Function of the MENTL-G Family
2.1.4. Order Statistics of the MENTL-G Family
3. Mixture of Two Exponentiated New Topp–Leone Inverse Weibull Distribution
3.1. Description of the Distribution
3.2. Some Statistical Properties
3.2.1. Quantile Function
3.2.2. Moments
3.2.3. Moment-Generating Function
3.2.4. Distribution of Order Statistics
4. Estimation for Mixture of Two Exponentiated New Topp–Leone Inverse Weibull Distributions
4.1. Maximum Likelihood Estimation
4.2. Bayesian Estimation
- Bayesian estimation of mixture exponentiated new Topp–Leone inverse Weibull distribution under squared error loss function
- II.
- Bayesian estimation of mixture exponentiated new Topp–Leone inverse Weibull distribution under LINEX loss function
5. Numerical Results
5.1. Simulation Study
- The following steps are used to generate samples from the MENTL-IW distribution:
- II.
- The following steps are considered to generate samples for Bayes estimators under SE and LINEX loss functions from the MENTL-IW distribution:
5.2. Applications
0.2, 0.3, 0.5, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0, 1.1, 1.3, 1.5, 1.5, 1.5, 1.5, 2.0, 2.0, 2.2, 2.5, 2.7, 3.0, 3.0, 3.3, 3.3, 4.0, 4.0, 4.5, 4.7, 5.0, 5.4, 5.4, 7.0, 7.5, 8.8, 9.0, 10.3, 22.0 and 24.5. |
0.0251, 0.0886, 0.0891, 0.2501, 0.3113, 0.3451, 0.4763, 0.5650, 0.5671, 0.6566, 0.6748, 0.6751, 0.6753, 0.7696, 0.8375, 0.8391, 0.8425, 0.8645, 0.8851, 0.9113, 0.9120, 0.9836, 1.0483, 1.0596, 1.0773, 1.1733, 1.2570, 1.2766, 1.2985, 1.3211, 1.3503, 1.3551, 1.4595, 1.4880, 1.5728, 1.5733, 1.7083, 1.7263, 1.7460, 1.7630, 1.7746, 1.8275, 1.8375, 1.8503, 1.8808, 1.8878, 1.8881, 1.9316, 1.9558, 2.0048, 2.0408, 2.0903, 2.1093, 2.1330, 2.2100, 2.2460, 2.2878, 2.3203, 2.3470, 2.3513, 2.4951, 2.5260, 2.9911, 3.0256, 3.2678, 3.4045, 3.4846, 3.7433, 3.7455, 3.9143, 4.8073, 5.4005, 5.4435, 5.5295, 6.5541 and 9.0960. |
6. Concluding Remarks
7. Suggested Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, K.E.; Moustafa, H.M.; Abd-Elrahman, A.M. Approximate Bayes estimation for mixture of two Weibull distributions under Type-2 censoring. J. Stat. Comput. Simul. 1997, 58, 269–285. [Google Scholar] [CrossRef]
- AL-Hussaini, E.K.; AL-Dayian, G.R.; Adham, S.A. On finite mixture of two-component Gompertz lifetime model. J. Stat. Comput. Simul. 2000, 67, 20–67. [Google Scholar] [CrossRef]
- Jaheen, Z.F. On record statistics from a mixture of two exponential distributions. J. Stat. Comput. Simul. 2005, 75, 1–11. [Google Scholar] [CrossRef]
- Shawky, A.I.; Bakoban, R.A. On infinite mixture of two component exponentiated gamma distribution. J. Appl. Sci. Res. 2009, 5, 1351–1369. [Google Scholar]
- Dey, S.; Baharith, L.; Alotaibi, R.; Rezk, H.R. The mixture of the Marshall-Olkin extended Weibull distribution under type-II censoring and different loss functions. Math. Probl. Eng. 2021, 2021, 6654101. [Google Scholar]
- Crisci, C.; Perera, G.; Sampognaro, L. Estimating the components of a mixture of extremal distributions under strong dependence. Adv. Pure Math. 2023, 13, 425–441. [Google Scholar] [CrossRef]
- AL-Dayian, G.R.; EL-Helbawy, A.A.; Abd El-Maksoud, F.G. A new mixture of two components of exponentiated family with applications to real life data sets. Comput. J. Math. Stat. Sci. 2024, 3, 258–279. [Google Scholar]
- McLachlan, G.; Peel, D. Finite Mixture Models; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2000. [Google Scholar]
- Otiniano CE, G.; Gonçalves, C.R.; Dorea, C.C.Y. Mixture of extreme-value distributions: Identifiability and estimation. Commun. Stat. Theory Methods 2017, 46, 6528–6542. [Google Scholar] [CrossRef]
- Gupta, R.C.; Gupta, P.; Gupta, R.D. Modeling failure time data by Lehmann alternatives. Commun. Stat. Theory Methods 1998, 27, 887–904. [Google Scholar] [CrossRef]
- Hassan, A.S.; El-Sherpieny, E.A.; El-Taweel, S.A. New Topp Leone-G family with mathematical properties and applications. J. Phys. Conf. Ser. 2021, 1860, 012011. [Google Scholar] [CrossRef]
- Sultan, K.S.; Ismail, M.A.; Al-Moisheer, A.S. Mixture of two inverse Weibull distributions: Properties and estimation. Comput. Stat. Data Anal. 2007, 51, 5377–5387. [Google Scholar]
- Barahona, J.A.; Gomez, Y.M.; Gomez-Deniz, E.; Venegas, O.; Gomez, H.W. Scale mixture of exponential distribution with an application. Mathematics 2024, 12, 156. [Google Scholar] [CrossRef]
- Gomez, M.Y.; Bolfarine, H.; Gomez, H.W. A New Extension of Exponential Distribution. Rev. Colomb. De Estad. 2014, 37, 25–34. [Google Scholar] [CrossRef]
n | Parameters | Averages | RE | Bias | UI | LI | Length |
---|---|---|---|---|---|---|---|
50 | 0.4886 | 0.0620 | 0.0001 | 0.5452 | 0.4320 | 0.1131 | |
1.1727 | 0.0620 | 0.0007 | 1.3085 | 1.0370 | 0.2715 | ||
1.6061 | 0.1518 | 0.0112 | 2.0010 | 1.2113 | 0.7896 | ||
p | 0.8429 | 0.4806 | 0.0204 | 1.4398 | 0.2461 | 1.1937 | |
1.6112 | 0.3475 | 0.1511 | 2.7407 | 0.4816 | 2.2590 | ||
1.1406 | 0.2949 | 0.0197 | 1.6487 | 0.6325 | 1.0161 | ||
0.5498 | 0.5573 | 0.0025 | 1.1978 | 0.0000 | 1.1978 | ||
0.5546 | 0.2214 | 0.0010 | 0.8013 | 0.3078 | 0.4935 | ||
2.4776 | 8.8836 | 0.1956 | 37.9070 | 0.0000 | 37.907 | ||
100 | 0.4895 | 0.0560 | 0.0001 | 0.5406 | 0.4385 | 0.1020 | |
1.1750 | 0.0560 | 0.0006 | 1.2974 | 1.0525 | 0.2449 | ||
1.6001 | 0.1330 | 0.0100 | 1.9385 | 1.2618 | 0.6767 | ||
p | 0.8463 | 0.4638 | 0.0214 | 1.4144 | 0.2782 | 1.1362 | |
1.5344 | 0.3061 | 0.2167 | 2.3140 | 0.7548 | 1.5591 | ||
1.1389 | 0.2794 | 0.0193 | 1.6141 | 0.6638 | 0.9502 | ||
0.5538 | 0.4637 | 0.0021 | 1.0916 | 0.0160 | 1.0756 | ||
0.5578 | 0.1933 | 0.0008 | 0.7729 | 0.3427 | 0.4301 | ||
2.2274 | 4.9735 | 0.0368 | 22.6510 | 0.0000 | 22.6510 | ||
150 | 0.4916 | 0.0478 | 0.0001 | 0.5354 | 0.4477 | 0.0877 | |
1.1798 | 0.0478 | 0.0004 | 1.2851 | 1.0745 | 0.2105 | ||
1.6135 | 0.1462 | 0.0128 | 1.9815 | 1.2455 | 0.7359 | ||
p | 0.8532 | 0.5010 | 0.0234 | 1.4715 | 0.2348 | 1.2367 | |
1.5189 | 0.3133 | 0.2313 | 2.3065 | 0.7314 | 1.5751 | ||
1.1387 | 0.2880 | 0.0192 | 1.6334 | 0.6441 | 0.9892 | ||
0.5314 | 0.5414 | 0.0046 | 1.1538 | 0.0000 | 1.1538 | ||
0.5661 | 0.1958 | 0.0004 | 0.7877 | 0.3445 | 0.4432 | ||
2.3970 | 2.8402 | 0.1308 | 13.7055 | 0.0000 | 13.7055 |
n | Parameters | Averages | RE | Bias | UI | LI | Length |
---|---|---|---|---|---|---|---|
50 | 0.4982 | 0.1633 | 0.0000 | 0.6582 | 0.3382 | 0.3200 | |
1.1957 | 0.1633 | 0.0000 | 1.5797 | 0.8117 | 0.7680 | ||
1.4930 | 0.1515 | 0.0000 | 1.9384 | 1.0476 | 0.8908 | ||
p | 0.4279 | 0.3248 | 0.0007 | 0.6766 | 0.1791 | 0.4974 | |
1.7126 | 0.3192 | 0.0825 | 2.8300 | 0.5952 | 2.2348 | ||
1.0666 | 0.1768 | 0.0044 | 1.3876 | 0.7456 | 0.6419 | ||
0.6616 | 0.3407 | 0.0037 | 1.0437 | 0.2795 | 0.7642 | ||
0.5902 | 0.0750 | 0.0002 | 0.6741 | 0.5063 | 0.1677 | ||
1.5521 | 0.8543 | 0.0007 | 4.1041 | 0.0000 | 4.1041 | ||
100 | 0.5008 | 0.2115 | 0.0000 | 0.7081 | 0.2935 | 0.4146 | |
1.2020 | 0.2115 | 0.0000 | 1.6996 | 0.7044 | 0.9952 | ||
1.5031 | 0.2746 | 0.0000 | 2.3104 | 0.6958 | 1.6146 | ||
p | 0.4299 | 0.3600 | 0.0008 | 0.7060 | 0.1538 | 0.5522 | |
1.7083 | 0.4537 | 0.0850 | 3.3924 | 0.0241 | 3.3682 | ||
1.0541 | 0.1692 | 0.0029 | 1.3685 | 0.7398 | 0.6286 | ||
0.6416 | 0.2806 | 0.0017 | 0.9614 | 0.3218 | 0.6395 | ||
0.5899 | 0.0974 | 0.0002 | 0.7014 | 0.4784 | 0.2230 | ||
1.5894 | 0.1710 | 0.0042 | 2.0842 | 1.0947 | 0.9895 | ||
150 | 0.5118 | 0.1119 | 0.0001 | 0.6190 | 0.4046 | 0.2144 | |
1.2283 | 0.1119 | 0.0008 | 1.4856 | 0.9710 | 0.5146 | ||
1.5293 | 0.0701 | 0.0008 | 1.7273 | 1.3313 | 0.3959 | ||
p | 0.4269 | 0.1583 | 0.0007 | 0.5393 | 0.3146 | 0.2247 | |
1.6129 | 0.3025 | 0.1497 | 2.5245 | 0.7013 | 1.8231 | ||
1.0451 | 0.0903 | 0.0020 | 1.1986 | 0.8917 | 0.3069 | ||
0.6506 | 0.1392 | 0.0025 | 0.7809 | 0.5203 | 0.2605 | ||
0.5844 | 0.0563 | 0.0004 | 0.6371 | 0.5317 | 0.1054 | ||
1.6085 | 0.1636 | 0.0070 | 2.0688 | 1.1482 | 0.9206 |
n | Parameters | Averages | RE | Bias | UI | LI | Length |
---|---|---|---|---|---|---|---|
50 | 0.4656 | 0.1971 | 0.0011 | 0.6468 | 0.2845 | 0.3623 | |
1.1176 | 0.1971 | 0.0067 | 1.5524 | 0.6828 | 0.8695 | ||
1.4155 | 0.1862 | 0.0071 | 1.9374 | 0.8936 | 1.0437 | ||
p | 0.1975 | 0.1941 | 0.0000 | 0.2735 | 0.1216 | 0.1519 | |
1.9364 | 0.2808 | 0.0040 | 3.0303 | 0.8424 | 2.1878 | ||
1.0774 | 0.1624 | 0.0060 | 1.3572 | 0.7976 | 0.5596 | ||
0.6313 | 0.2279 | 0.0009 | 0.8922 | 0.3703 | 0.5219 | ||
0.6279 | 0.0774 | 0.0000 | 0.7197 | 0.5360 | 0.1836 | ||
1.1044 | 0.1675 | 0.0093 | 1.4505 | 0.7583 | 0.6922 | ||
100 | 0.4755 | 0.1606 | 0.0005 | 0.6255 | 0.3256 | 0.2999 | |
1.1414 | 0.1606 | 0.0034 | 1.5012 | 0.7815 | 0.7197 | ||
1.4535 | 0.1121 | 0.0021 | 1.7703 | 1.1367 | 0.6335 | ||
p | 0.1954 | 0.1927 | 0.0000 | 0.2705 | 0.1204 | 0.1500 | |
1.9960 | 0.3074 | 0.0000 | 3.2011 | 0.7910 | 2.4100 | ||
1.0404 | 0.0952 | 0.0016 | 1.2093 | 0.8715 | 0.3378 | ||
0.6075 | 0.1522 | 0.0000 | 0.7859 | 0.4291 | 0.3568 | ||
0.6228 | 0.0804 | 0.0000 | 0.7199 | 0.5258 | 0.1940 | ||
1.1256 | 0.1437 | 0.0056 | 1.4300 | 0.8212 | 0.6087 | ||
150 | 0.4749 | 0.1236 | 0.0006 | 0.5857 | 0.3641 | 0.2216 | |
1.1399 | 0.1236 | 0.0036 | 1.4059 | 0.8739 | 0.5319 | ||
1.4700 | 0.0843 | 0.0008 | 1.7107 | 1.2292 | 0.4815 | ||
p | 0.1943 | 0.1183 | 0.0000 | 0.2393 | 0.1492 | 0.0900 | |
2.0629 | 0.2292 | 0.0039 | 2.9533 | 1.1726 | 1.7806 | ||
1.0218 | 0.0654 | 0.0004 | 1.1426 | 0.9009 | 0.2417 | ||
0.5938 | 0.0992 | 0.0000 | 0.7100 | 0.4777 | 0.2323 | ||
0.6249 | 0.0406 | 0.0000 | 0.6722 | 0.5776 | 0.0945 | ||
1.1286 | 0.1246 | 0.0052 | 1.3854 | 0.8719 | 0.5135 |
n | Loss Functions | Parameters | Averages | ER | RAB | UI | LI | Length |
---|---|---|---|---|---|---|---|---|
50 | SE | 0.4801 | 0.1573 | 0.0396 | 0.5027 | 0.4607 | 0.0420 | |
1.1815 | 0.1354 | 0.0153 | 1.2015 | 1.1680 | 0.0335 | |||
1.5181 | 0.1322 | 0.0121 | 1.5295 | 1.4972 | 0.0323 | |||
0.7069 | 0.0191 | 0.0098 | 0.7160 | 0.6986 | 0.0174 | |||
2.0107 | 0.0458 | 0.0053 | 2.0190 | 2.0037 | 0.0153 | |||
0.9869 | 0.0677 | 0.0130 | 0.9970 | 0.9755 | 0.0215 | |||
0.5834 | 0.1098 | 0.0276 | 0.5989 | 0.5712 | 0.0277 | |||
0.5933 | 0.0184 | 0.0115 | 0.6047 | 0.5781 | 0.0266 | |||
1.0868 | 0.0545 | 0.0106 | 1.0978 | 1.0764 | 0.0214 | |||
LINEX | 0.4919 | 0.0260 | 0.0161 | 0.5069 | 0.4700 | 0.0369 | ||
1.1924 | 0.0228 | 0.0062 | 1.2071 | 1.1758 | 0.0313 | |||
1.4886 | 0.0517 | 0.0075 | 1.5018 | 1.4769 | 0.0249 | |||
0.7151 | 0.0919 | 0.0216 | 0.7268 | 0.6982 | 0.0286 | |||
1.9989 | 0.0004 | 0.0005 | 2.0087 | 1.9911 | 0.0176 | |||
0.9812 | 0.1408 | 0.0187 | 1.0024 | 0.9668 | 0.0356 | |||
0.6061 | 0.0153 | 0.0103 | 0.6155 | 0.5951 | 0.0204 | |||
0.5712 | 0.0932 | 0.0260 | 0.5846 | 0.5555 | 0.0291 | |||
1.1080 | 0.0364 | 0.0086 | 1.1238 | 1.0950 | 0.0288 | |||
100 | SE | 0.4843 | 0.0973 | 0.0312 | 0.5117 | 0.4665 | 0.0452 | |
1.2018 | 0.0014 | 0.0015 | 1.2130 | 1.1946 | 0.0184 | |||
1.5054 | 0.0119 | 0.0036 | 1.5154 | 1.4965 | 0.0189 | |||
0.7125 | 0.0631 | 0.0179 | 0.7237 | 0.6990 | 0.0247 | |||
2.0016 | 0.0011 | 0.0008 | 2.0120 | 1.9941 | 0.0179 | |||
1.0012 | 0.0006 | 0.0012 | 1.0128 | 0.9925 | 0.0203 | |||
0.6116 | 0.0542 | 0.0194 | 0.6182 | 0.6024 | 0.0158 | |||
0.5755 | 0.0486 | 0.0187 | 0.5839 | 0.5643 | 0.0196 | |||
1.1085 | 0.0404 | 0.0091 | 1.1173 | 1.0985 | 0.0188 | |||
LINEX | 0.4984 | 9.87 × 10−4 | 0.0031 | 0.5058 | 0.4875 | 0.0183 | ||
1.1785 | 1.84 × 10−1 | 0.0178 | 1.1952 | 1.1641 | 0.0311 | |||
1.4996 | 5.33 × 10−5 | 0.0002 | 1.5109 | 1.4878 | 0.0231 | |||
0.7027 | 2.93 × 10−3 | 0.0038 | 0.7126 | 0.6957 | 0.0169 | |||
1.9934 | 1.71 × 10−2 | 0.0032 | 2.0044 | 1.9831 | 0.0213 | |||
1.0046 | 8.46 × 10−3 | 0.0046 | 1.0108 | 0.9978 | 0.0130 | |||
0.5930 | 1.90 × 10−2 | 0.0115 | 0.6002 | 0.5837 | 0.0165 | |||
0.5779 | 2.94 × 10−2 | 0.0146 | 0.5879 | 0.5700 | 0.0179 | |||
1.1054 | 1.93 × 10³ | 0.0063 | 1.1171 | 1.0936 | 0.0235 | |||
150 | SE | 0.5042 | 0.0071 | 0.0084 | 0.5162 | 0.4920 | 0.0242 | |
1.1915 | 0.0284 | 0.0070 | 1.2017 | 1.1798 | 0.0219 | |||
1.4868 | 0.0689 | 0.0087 | 1.5024 | 1.4745 | 0.0279 | |||
0.6903 | 0.0370 | 0.0137 | 0.7023 | 0.6817 | 0.0206 | |||
2.0045 | 0.0082 | 0.0022 | 2.0123 | 1.9954 | 0.0169 | |||
1.0119 | 0.0570 | 0.0119 | 1.0193 | 1.0019 | 0.0174 | |||
0.6214 | 0.1848 | 0.0358 | 0.6449 | 0.5995 | 0.0454 | |||
0.5998 | 0.0706 | 0.0226 | 0.6100 | 0.5831 | 0.0269 | |||
1.1112 | 0.0654 | 0.0116 | 1.1271 | 1.0885 | 0.0386 | |||
LINEX | 0.5253 | 0.2574 | 0.0507 | 0.5476 | 0.5036 | 0.0440 | ||
1.2168 | 0.1141 | 0.0140 | 1.2322 | 1.2027 | 0.0295 | |||
1.4848 | 0.0914 | 0.0100 | 1.4970 | 1.4715 | 0.0255 | |||
0.7015 | 0.0009 | 0.0022 | 0.7263 | 0.6859 | 0.0404 | |||
2.0077 | 0.0239 | 0.0038 | 2.0211 | 1.9931 | 0.0280 | |||
0.9936 | 0.0161 | 0.0063 | 1.0028 | 0.9837 | 0.0191 | |||
0.5993 | 0.0001 | 0.0010 | 0.6120 | 0.5912 | 0.0208 | |||
0.5704 | 0.1036 | 0.0274 | 0.5876 | 0.5539 | 0.0337 | |||
1.1040 | 0.0122 | 0.0050 | 1.1105 | 1.0966 | 0.0139 |
n | Loss Functions | Parameters | Averages | ER | RAB | UI | LI | Length |
---|---|---|---|---|---|---|---|---|
50 | SE | 0.5094 | 0.0356 | 0.0188 | 0.5263 | 0.4932 | 0.0331 | |
1.1815 | 0.1368 | 0.0154 | 1.1980 | 1.1685 | 0.0295 | |||
1.4961 | 0.0060 | 0.0025 | 1.5065 | 1.4771 | 0.0294 | |||
0.4059 | 0.0142 | 0.0149 | 0.4138 | 0.3945 | 0.0193 | |||
1.9981 | 0.0013 | 0.0009 | 2.0113 | 1.9868 | 0.0245 | |||
1.0107 | 0.0460 | 0.0107 | 1.0252 | 0.9993 | 0.0259 | |||
0.6052 | 0.0110 | 0.0087 | 0.6146 | 0.5953 | 0.0193 | |||
0.5898 | 0.0971 | 0.0257 | 0.6057 | 0.5769 | 0.0288 | |||
1.0229 | 0.1190 | 0.0171 | 1.0346 | 1.0084 | 0.0262 | |||
LINEX | 0.5069 | 0.0190 | 0.0138 | 0.5164 | 0.5000 | 0.0164 | ||
1.1748 | 0.2533 | 0.0209 | 1.1904 | 1.1642 | 0.0262 | |||
1.4957 | 0.0073 | 0.0028 | 1.5036 | 1.4852 | 0.0184 | |||
0.3887 | 0.0508 | 0.0281 | 0.4084 | 0.3676 | 0.0408 | |||
2.0091 | 0.0335 | 0.0045 | 2.0217 | 1.9992 | 0.0225 | |||
1.0033 | 0.0044 | 0.0033 | 1.0173 | 0.9897 | 0.0276 | |||
0.5959 | 0.0064 | 0.0066 | 0.6022 | 0.5885 | 0.0137 | |||
0.5969 | 0.0287 | 0.0139 | 0.6081 | 0.5889 | 0.0192 | |||
0.9998 | 0.0136 | 0.0058 | 1.0123 | 0.9912 | 0.0211 | |||
100 | SE | 0.4779 | 0.1950 | 0.0441 | 0.4962 | 0.4607 | 0.0355 | |
1.1902 | 0.0382 | 0.0081 | 1.2058 | 1.1771 | 0.0287 | |||
1.5139 | 0.0779 | 0.0093 | 1.5267 | 1.4992 | 0.0275 | |||
0.3923 | 0.0234 | 0.0191 | 0.4056 | 0.3759 | 0.0297 | |||
1.9910 | 0.0322 | 0.0044 | 2.0007 | 1.9840 | 0.0167 | |||
1.0227 | 0.2066 | 0.0227 | 1.0394 | 1.0052 | 0.0342 | |||
0.6094 | 0.0359 | 0.0157 | 0.6202 | 0.6003 | 0.0199 | |||
0.6063 | 0.0003 | 0.0015 | 0.6163 | 0.5999 | 0.0164 | |||
0.9884 | 0.1196 | 0.0171 | 1.0108 | 0.9639 | 0.0469 | |||
LINEX | 0.4977 | 0.0019 | 0.0044 | 0.5107 | 0.4854 | 0.0253 | ||
1.2009 | 0.0003 | 0.0007 | 1.2115 | 1.1880 | 0.0235 | |||
1.5083 | 0.0279 | 0.0055 | 1.5166 | 1.5009 | 0.0157 | |||
0.3946 | 0.0116 | 0.0134 | 0.4075 | 0.3799 | 0.0276 | |||
1.9730 | 0.2910 | 0.0134 | 1.9993 | 1.9416 | 0.0577 | |||
1.0078 | 0.0245 | 0.0078 | 1.0156 | 0.9971 | 0.0185 | |||
0.5820 | 0.1290 | 0.0299 | 0.6028 | 0.5705 | 0.0323 | |||
0.6001 | 0.0112 | 0.0087 | 0.6103 | 0.5917 | 0.0186 | |||
0.9978 | 0.0245 | 0.0077 | 1.0102 | 0.9835 | 0.0267 | |||
150 | SE | 0.4874 | 0.0633 | 0.0251 | 0.4973 | 0.4740 | 0.0233 | |
1.2079 | 0.0253 | 0.0066 | 1.2231 | 1.1916 | 0.0315 | |||
1.4876 | 0.0608 | 0.0082 | 1.4997 | 1.4778 | 0.0219 | |||
0.4264 | 0.2795 | 0.0660 | 0.4400 | 0.4081 | 0.0319 | |||
1.9858 | 0.0799 | 0.0070 | 1.9991 | 1.9714 | 0.0277 | |||
1.0149 | 0.0896 | 0.0149 | 1.0336 | 0.9981 | 0.0355 | |||
0.6028 | 0.0032 | 0.0047 | 0.6112 | 0.5956 | 0.0156 | |||
0.5919 | 0.0730 | 0.0223 | 0.6073 | 0.5802 | 0.0271 | |||
0.9820 | 0.2234 | 0.0235 | 1.0036 | 0.9561 | 0.0475 | |||
LINEX | 0.4711 | 0.3322 | 0.0576 | 0.4907 | 0.4582 | 0.0325 | ||
1.2144 | 0.0833 | 0.0120 | 1.2294 | 1.2005 | 0.0289 | |||
1.5100 | 0.0407 | 0.0067 | 1.5275 | 1.4922 | 0.0353 | |||
0.4082 | 0.0269 | 0.0205 | 0.4171 | 0.4005 | 0.0166 | |||
1.9796 | 0.1651 | 0.0101 | 1.9998 | 1.9710 | 0.0288 | |||
0.9973 | 0.0028 | 0.0026 | 1.0066 | 0.9847 | 0.0219 | |||
0.5914 | 0.0290 | 0.0142 | 0.6017 | 0.5823 | 0.0194 | |||
0.6152 | 0.0388 | 0.0162 | 0.6249 | 0.6031 | 0.0218 | |||
1.0006 | 0.0100 | 0.0049 | 1.0132 | 0.9893 | 0.0239 |
n | Loss Functions | Parameters | Averages | ER | RAB | UI | LI | Length |
---|---|---|---|---|---|---|---|---|
50 | SE | 0.5078 | 0.0248 | 0.0157 | 0.5330 | 0.4854 | 0.0476 | |
1.1959 | 0.0066 | 0.0033 | 1.2042 | 1.1882 | 0.0160 | |||
1.4928 | 0.0204 | 0.0047 | 1.5072 | 1.4773 | 0.0299 | |||
0.1945 | 0.0119 | 0.0273 | 0.2030 | 0.1848 | 0.0182 | |||
1.9960 | 0.0063 | 0.0019 | 2.0076 | 1.9854 | 0.0222 | |||
1.0026 | 0.0029 | 0.0026 | 1.0260 | 0.9882 | 0.0378 | |||
0.5982 | 0.0012 | 0.0028 | 0.6080 | 0.5877 | 0.0203 | |||
0.6005 | 0.1217 | 0.0282 | 0.6213 | 0.5784 | 0.0429 | |||
0.9410 | 0.0140 | 0.0062 | 0.9518 | 0.9280 | 0.0238 | |||
LINEX | 0.5008 | 3.00 × 10−4 | 0.0017 | 0.5086 | 0.4936 | 0.0150 | ||
1.1985 | 7.86 × 10−4 | 0.0011 | 1.2079 | 1.1890 | 0.0189 | |||
1.4813 | 1.39 × 10−1 | 0.0124 | 1.5066 | 1.4634 | 0.0432 | |||
0.1959 | 6.61 × 10−3 | 0.0203 | 0.2121 | 0.1809 | 0.0312 | |||
2.0006 | 1.56 × 10−4 | 0.0003 | 2.0104 | 1.9928 | 0.0176 | |||
1.0089 | 3.21 × 10−2 | 0.0089 | 1.0221 | 0.9967 | 0.0254 | |||
0.5793 | 1.70 × 10−1 | 0.0343 | 0.5989 | 0.5595 | 0.0394 | |||
0.6177 | 2.69 × 10−5 | 0.0004 | 0.6271 | 0.6060 | 0.0211 | |||
0.9557 | 3.04 × 10−2 | 0.0092 | 0.9627 | 0.9479 | 0.0148 | |||
100 | SE | 0.5022 | 0.0020 | 0.0045 | 0.5112 | 0.4952 | 0.0160 | |
1.1907 | 0.0342 | 0.0077 | 1.2076 | 1.1773 | 0.0303 | |||
1.4951 | 0.0092 | 0.0032 | 1.5042 | 1.4875 | 0.0167 | |||
0.1957 | 0.0073 | 0.0214 | 0.2039 | 0.1885 | 0.0154 | |||
2.0050 | 0.0101 | 0.0025 | 2.0210 | 1.9931 | 0.0279 | |||
1.0284 | 0.3245 | 0.0284 | 1.0570 | 0.9976 | 0.0594 | |||
0.6144 | 0.0834 | 0.0240 | 0.6261 | 0.6006 | 0.0255 | |||
0.6167 | 0.0006 | 0.0021 | 0.6315 | 0.6060 | 0.0255 | |||
0.9460 | 0.0003 | 0.0009 | 0.9550 | 0.9386 | 0.0164 | |||
LINEX | 0.5032 | 4.19 × 10−3 | 0.0064 | 0.5167 | 0.4880 | 0.0287 | ||
1.2046 | 8.70 × 10−3 | 0.0038 | 1.2146 | 1.1947 | 0.0199 | |||
1.5190 | 1.44 × 10−1 | 0.0126 | 1.5373 | 1.5007 | 0.0366 | |||
0.1996 | 5.85 × 10−5 | 0.0019 | 0.2098 | 0.1889 | 0.0209 | |||
1.9974 | 2.67 × 10−3 | 0.0012 | 2.0036 | 1.9919 | 0.0117 | |||
0.9898 | 4.14 × 10−2 | 0.0101 | 1.0003 | 0.9781 | 0.0222 | |||
0.5959 | 6.44 × 10−3 | 0.0066 | 0.6078 | 0.5836 | 0.0242 | |||
0.6168 | 5.24 × 10−4 | 0.0018 | 0.6259 | 0.6087 | 0.0172 | |||
0.9467 | 1.66 × 10−5 | 0.0002 | 0.9541 | 0.9377 | 0.0164 | |||
150 | SE | 0.5125 | 0.0633 | 0.0251 | 0.5209 | 0.5040 | 0.0169 | |
1.1958 | 0.0068 | 0.0034 | 1.2101 | 1.1768 | 0.0333 | |||
1.5024 | 0.0023 | 0.0016 | 1.5128 | 1.4930 | 0.0198 | |||
0.2268 | 0.2889 | 0.1343 | 0.2392 | 0.2104 | 0.0288 | |||
1.9901 | 0.0384 | 0.0049 | 2.0005 | 1.9830 | 0.0175 | |||
0.9956 | 0.0074 | 0.0043 | 1.0119 | 0.9756 | 0.0363 | |||
0.5833 | 0.1108 | 0.0277 | 0.5932 | 0.5659 | 0.0273 | |||
0.6283 | 0.0422 | 0.0166 | 0.6475 | 0.6163 | 0.0312 | |||
0.9535 | 0.0172 | 0.0069 | 0.9609 | 0.9431 | 0.0178 | |||
LINEX | 0.4970 | 3.40 × 10−3 | 5.83 × 10−3 | 0.5056 | 0.4888 | 0.0168 | ||
1.2000 | 5.54 × 10−7 | 3.10 × 10−5 | 1.2132 | 1.1849 | 0.0283 | |||
1.4879 | 5.84 × 10−2 | 8.06 × 10−3 | 1.5000 | 1.4762 | 0.0238 | |||
0.1853 | 8.52 × 10−2 | 7.30 × 10−2 | 0.2007 | 0.1703 | 0.0304 | |||
2.0072 | 2.11 × 10−2 | 3.63 × 10−3 | 2.0171 | 1.9984 | 0.0187 | |||
0.9965 | 4.77 × 10−3 | 3.45 × 10−3 | 1.0025 | 0.9900 | 0.0125 | |||
0.5924 | 2.28 × 10−2 | 1.25 × 10−2 | 0.6055 | 0.5795 | 0.0260 | |||
0.6238 | 1.34 × 10−2 | 9.37 × 10−3 | 0.6326 | 0.6112 | 0.0214 | |||
0.9584 | 5.24 × 10−2 | 1.20 × 10−2 | 0.9685 | 0.9487 | 0.0198 |
Parameters | Dataset I | Dataset II | ||
---|---|---|---|---|
Estimates | Standard Errors | Estimates | Standard Errors | |
0.5134 | 0.0001 | 0.5219 | 0.0004 | |
1.2322 | 0.0010 | 1.2527 | 0.0027 | |
1.2852 | 0.0461 | 1.5870 | 0.0075 | |
p | 0.4635 | 0.0040 | 0.4073 | 0.0000 |
2.7183 | 0.5160 | 2.2909 | 0.0846 | |
1.1729 | 0.0299 | 1.2229 | 0.0497 | |
0.4034 | 0.0386 | 0.4220 | 0.0316 | |
R | 0.7022 | 0.0093 | 0.7149 | 0.0119 |
H | 0.9626 | 0.3155 | 1.0229 | 0.2514 |
Parameters | Dataset I | |||
---|---|---|---|---|
MENTL-IW | MTIW | E-IW | NTL-IW | |
0.5134 | __ | 0.6863 | __ | |
1.2322 | 1.1096 | 1.6473 | __ | |
1.2852 | 1.4404 | 0.8366 | __ | |
p | 0.4635 | 0.4621 | __ | __ |
2.7183 | __ | __ | 2.7646 | |
1.1729 | 0.1889 | __ | 1.0576 | |
0.4034 | 0.5670 | __ | 0.4088 | |
R | 0.7022 | 0.8299 | 0.7440 | 0.7569 |
H | 0.9626 | 0.4354 | 0.4902 | 0.4682 |
p-value | 0.649 | 0.133 | 0.222 | 0.332 |
LL | 148.883 | 217.495 | 204.548 | 200.52 |
AIC | 162.883 | 227.495 | 210.548 | 206.52 |
BIC | 175.683 | 236.639 | 216.34 | 212.006 |
CAIC | 165.830 | 228.995 | 211.12 | 207.091 |
Parameters | Dataset II | |||
---|---|---|---|---|
MENTL-IW | MTIW | E-IW | NTL-IW | |
0.5219 | __ | 0.3207 | __ | |
1.2527 | 1.7678 | 0.7698 | __ | |
1.5870 | 1.1541 | 1.4295 | __ | |
p | 0.4073 | 0.0827 | __ | __ |
2.2909 | __ | __ | 2.7927 | |
1.2229 | 1.3302 | __ | 0.9536 | |
0.4220 | 0.8031 | __ | 0.4208 | |
0.7149 | 0.6033 | 0.2880 | 0.6858 | |
1.0229 | 0.6285 | 1.5005 | 0.6028 | |
p-value | 0.217 | 0.152 | 0.301 | 0.103 |
LL | 208.045 | 308.066 | 441.924 | 264.184 |
AIC | 222.045 | 318.066 | 447.924 | 270.184 |
BIC | 238.360 | 329.72 | 454.916 | 277.176 |
CAIC | 223.692 | 318.923 | 448.257 | 270.517 |
Parameters | Loss Function | ||||
---|---|---|---|---|---|
SE | LINEX | ||||
Bayes Estimates | Standard Errors | Bayes Estimates | Standard Errors | ||
Application I | p | 2.0103 1.4051 0.8065 0.5932 2.5001 1.8982 1.4872 0.9705 0.1014 | 0.0095 0.0095 0.0128 0.0135 0.0107 0.0124 0.0115 0.0089 0.0094 | 1.9981 1.3953 0.7840 0.6020 2.4917 1.8760 1.5111 0.9854 0.1004 | 0.0105 0.0146 0.0140 0.0082 0.0099 0.0134 0.0141 0.0162 0.0103 |
Application II | p | 2.0077 1.4076 0.7980 0.6022 2.5014 1.8810 1.5053 0.9686 0.1086 | 0.0093 0.0094 0.0074 0.0075 0.0103 0.0130 0.0096 0.0110 0.0086 | 1.9918 1.3987 0.7940 0.6152 2.5146 1.9088 1.5005 0.9936 0.1247 | 0.0083 0.0094 0.0081 0.0115 0.0104 0.0093 0.0082 0.0116 0.0085 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammad, H.H.; Binhimd, S.M.S.; EL-Helbawy, A.A.; AL-Dayian, G.R.; Abd EL-Maksoud, F.G.; Abd Elaal, M.K. Development and Engineering Applications of a Novel Mixture Distribution: Exponentiated and New Topp–Leone-G Families. Symmetry 2025, 17, 399. https://doi.org/10.3390/sym17030399
Mohammad HH, Binhimd SMS, EL-Helbawy AA, AL-Dayian GR, Abd EL-Maksoud FG, Abd Elaal MK. Development and Engineering Applications of a Novel Mixture Distribution: Exponentiated and New Topp–Leone-G Families. Symmetry. 2025; 17(3):399. https://doi.org/10.3390/sym17030399
Chicago/Turabian StyleMohammad, Hebatalla H., Sulafah M. S. Binhimd, Abeer A. EL-Helbawy, Gannat R. AL-Dayian, Fatma G. Abd EL-Maksoud, and Mervat K. Abd Elaal. 2025. "Development and Engineering Applications of a Novel Mixture Distribution: Exponentiated and New Topp–Leone-G Families" Symmetry 17, no. 3: 399. https://doi.org/10.3390/sym17030399
APA StyleMohammad, H. H., Binhimd, S. M. S., EL-Helbawy, A. A., AL-Dayian, G. R., Abd EL-Maksoud, F. G., & Abd Elaal, M. K. (2025). Development and Engineering Applications of a Novel Mixture Distribution: Exponentiated and New Topp–Leone-G Families. Symmetry, 17(3), 399. https://doi.org/10.3390/sym17030399