Comprehensive Subfamilies of Bi-Univalent Functions Defined by Error Function Subordinate to Euler Polynomials
Abstract
1. Introduction
2. Bounds of the Subfamilies and
3. Some Corollaries
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alzer, H. Error functions inequalities. Adv. Comput. Math. 2010, 33, 349–379. [Google Scholar] [CrossRef]
- Coman, D. The radius of starlikeness for error function. Stud. Univ. Babes Bolyal Math. 1991, 36, 13–16. [Google Scholar]
- Elbert, A.; Laforgia, A. The zeros of the complementary error function. Numer. Algorithms 2008, 49, 153–157. [Google Scholar] [CrossRef]
- Rapport sur deux mémoires d’analyse du professeur Bürmann, Lagrange, Joseph-Louis and Legendre, Adrien-Marie, Mémoires de l’Institut National des Sciences et Arts. Sci. Math. Phys. 1799, 2, 13–17.
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas; Graphs and Matematical Tables; Dorer Publications Inc.: New York, NY, USA, 1965. [Google Scholar]
- Ramachandran, C.; Vanitha, L.; Kanas, S. Certain results on q-starlike and q-convex error functions. Math. Slovaca. 2018, 68, 361–368. [Google Scholar] [CrossRef]
- Mohammed, N.H.; Cho, N.E.; Adegani, E.A.; Bulboaca, T. Geometric properties of normalized imaginary error function. Stud. Univ. Babes Bolyai Math. 2022, 67, 455–462. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some formulas for the Bernoulli and Euler polynomials at rational arguments. Math. Proc. Camb. Philos. Soc. 2000, 129, 77–84. [Google Scholar] [CrossRef]
- Kac, V.; Cheung, P. Quantum Calculus. In Universitext; Springer: New York, NY, USA, 2002. [Google Scholar]
- Amourah, A.; Frasin, B.A.; Seoudy, T.M. An Application of Miller-Ross-Type Poisson Distribution on Certain Subclasses of Bi-Univalent Functions Subordinate to Gegenbauer Polynomials. Mathematics 2022, 10, 2462. [Google Scholar] [CrossRef]
- Deniz, E. Certain subclasses of bi-univalent functions satisfying subordinate conditions. J. Class. Anal. 2013, 2, 49–60. [Google Scholar] [CrossRef]
- Tang, H.; Deng, G.; Li, S. Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions. J. Inequal. Appl. 2013, 2013, 317. [Google Scholar] [CrossRef]
- Yousef, F.; Al-Hawary, T.; Murugusundaramoorthy, G. Fekete-Szegö functional problems for some subclasses of bi-univalent functions defined by Frasin differential operator. Afr. Mat. 2019, 30, 495–503. [Google Scholar] [CrossRef]
- Fekete, M.; Szegö, G. Eine Bemerkung Ãber ungerade schlichte Funktionen. J. Lond. Math. Soc. 1933, 1, 85–89. [Google Scholar] [CrossRef]
- Frasin, B.A.; Al-Hawary, T.; Amourah, A.; Salah, J.; Al-Refai, O. Inclusive Subclasses of Bi-univalent Functions Specified by Euler Polynomials. Eur. J. Pure Appl. Math. 2024, 17, 2538–2549. [Google Scholar] [CrossRef]
- Ponnusamy, S. Differential subordination and starlike functions. Complex Var. Theory Appl. 1992, 19, 185–194. [Google Scholar] [CrossRef]
- Ezrohi, T.G. Certain estimates in special classes of univalent functions in the unit circle . Doporidi. Akad. Nauk. Ukrain RSR 1965, 2, 984–988. [Google Scholar]
- Pommerenke, C. Univalent Functions; Vandenhoeck and Rupercht: Gttingen, Germany, 1975. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Hawary, T.; Frasin, B.; Salah, J. Comprehensive Subfamilies of Bi-Univalent Functions Defined by Error Function Subordinate to Euler Polynomials. Symmetry 2025, 17, 256. https://doi.org/10.3390/sym17020256
Al-Hawary T, Frasin B, Salah J. Comprehensive Subfamilies of Bi-Univalent Functions Defined by Error Function Subordinate to Euler Polynomials. Symmetry. 2025; 17(2):256. https://doi.org/10.3390/sym17020256
Chicago/Turabian StyleAl-Hawary, Tariq, Basem Frasin, and Jamal Salah. 2025. "Comprehensive Subfamilies of Bi-Univalent Functions Defined by Error Function Subordinate to Euler Polynomials" Symmetry 17, no. 2: 256. https://doi.org/10.3390/sym17020256
APA StyleAl-Hawary, T., Frasin, B., & Salah, J. (2025). Comprehensive Subfamilies of Bi-Univalent Functions Defined by Error Function Subordinate to Euler Polynomials. Symmetry, 17(2), 256. https://doi.org/10.3390/sym17020256