Super Lie–Poisson Structures, Their Deformations, and Related New Nonlinear Integrable Super-Hamiltonian Systems
Abstract
1. Introduction
2. Preliminaries
3. Super-Poisson Structures, Their Deformations and Related Integrable Hamiltonian Systems
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adler, M. On a trace functional for formal pseudodifferential operators and the symplectic structure of the Korteweg-devries type equations. Invent. Math. 1978, 50, 219–248. [Google Scholar] [CrossRef]
- Faddeev, L.D.; Takhtajan, L.A. Hamiltonian Approach in Soliton Theory; Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Reyman, A.G.; Semenov-Tian-Shansky, M.A. Integrable Systems; The Computer Research Institute: Moscow-Izhevsk, Russia, 2003. (In Russian) [Google Scholar]
- Leites, D.; Xuan, P. Supersymmetry of the Schrodinger and Korteweg-de Vries operators. arXiv 1997, arXiv:hep-th/9710045. [Google Scholar]
- Manin, Y.I.; Radul, A.O. A supersymmetric extension of the Kadomtsev-Petviashvili hierarchy. Commun. Math. Phys. 1985, 98, 65–77. [Google Scholar] [CrossRef]
- Hentosh, O. Hamiltonian finite-dimensional oscillatory-type reductions of Lax-integrable superconformal hierarchies. Nonlinear Oscil. 2006, 9, 13–27. [Google Scholar] [CrossRef]
- Hentosh, O.E. The Lax integrable Laberge–Mathieu hierarchy of supersymmetric nonlinear dynamical systems and its finite-dimensional Neumann type reduction. Ukr. Math. J. 2009, 61, 1075–1092. [Google Scholar] [CrossRef]
- Hentosh, O. Compatibly bi-Hamiltonian superconformal analogs of the Lax-integrable nonlinear dynamical systems. Ukr. Math. 2006, 58, 1001–1015. [Google Scholar] [CrossRef]
- Hentosh, O. Bargman type finite-dimensional reductions of the Lax-integrable supersymmetric Boussinesq hierarchy and their integrability. J. Math. Sci. 2017, 220, 402–424. [Google Scholar] [CrossRef]
- Hentosh, O.; Prykarpatsky, Y. The Lax-Sato integrable heavenly equations on functional supermanifolds and their Lie-algebraic structure. Eur. J. Math. 2020, 6, 232–247. [Google Scholar] [CrossRef]
- Blackmore, D.; Prykarpatsky, A.K.; Samoylenko, V.H. Nonlinear Dynamical Systems of Mathematical Physics; World Scientific Publisher: Hackensack, NJ, USA, 2011. [Google Scholar]
- Blaszak, M. Multi-Hamiltonian Theory of Dynamical Systems; Springer: New York, NY, USA, 1998. [Google Scholar]
- Symes, W.W. Systems of Toda type, inverse spectral problem and representation theory. Invent. Math. 1980, 59, 13–51. [Google Scholar] [CrossRef]
- Popowicz, Z. N = 2 Supercomplexification of the Kortewegde Vries, Sawada-Kotera and Kaup-Kupershmidt Equations. J. Nonlinear Math. 2019, 26, 294–312. [Google Scholar] [CrossRef]
- Eidinejad, Z.; Saadati, R.; Mesiar, R. Optimum Approximation for ζ–Lie Homomorphisms and Jordan ζ–Lie Homomorphisms in ζ–Lie Algebras by Aggregation Control Functions. Mathematics 2022, 10, 1704. [Google Scholar] [CrossRef]
- Kulish, P.P. Analog of the Korteweg–de Vries equation for the superconformal algebra. J. Soviet Math. 1988, 41, 970–975. [Google Scholar] [CrossRef]
- Leites, D. Introduction to supermanifolds. Russ. Math. Surv. 1980, 35, 1–64. [Google Scholar] [CrossRef]
- Leites, D. Lie superalgebras. J. Sov. Math. 1985, 30, 2481–2512. [Google Scholar] [CrossRef]
- Yamanaka, I.; Sasaki, R. Super Virasoro Algebra and Solvable Supersymmetric Quantum Field Theories. Prog. Theor. Phys. 1988, 79, 1167–1184. [Google Scholar] [CrossRef]
- Holod, P.; Pakulyak, S. On the superextension of the Kadomtsev-Petviashvili equation and finite-gap solutions of Korteweg-de Vries superequations. In Problems of Modern Quantum Field Theory (Alushta, 1989); Research Reports in Physics; Springer: Berlin/Heidelberg, Germany, 1989; pp. 107–116. [Google Scholar]
- Oevel, W.; Strampp, W. Constrained KP-hierarchy and bi-Hamiltonian structures. Commun. Math. Phys. 1993, 157, 51–81. [Google Scholar] [CrossRef]
- Prykarpatsky, Y.A. Structure of integrable Lax flows on nonlocal manifolds: Dynamical systems with sources. Math. Methods Phys.-Mech. Fields 1997, 40, 106–115. [Google Scholar] [CrossRef]
- Prykarpatsky, A.; Samuliak, R.; Blackmore, D.; Stramp, W.; Sydorenko, Y. Some remarks on Lagrangian and Hamiltonian formalism, related to infinite-dimensional dynamical systems with symmetries. Condens. Matter Phys. 1995, 6, 79–104. [Google Scholar] [CrossRef]
- Xue, L.-L.; Liu, Q.P. Bäcklund-Darboux Transformations and Discretizations of Super KdV Equation. SIGMA 2014, 10, 045. [Google Scholar] [CrossRef]
- Prykarpatsky, A.K.; Hentosh, O.Y. The Lie-algebraic structure of (2 + 1)-dimensional Lax type integrable nonlinear dynamical systems. Ukr. Math. J. 2004, 56, 939–946. [Google Scholar] [CrossRef]
- Abraham, R.; Marsden, J. Foundation of Mechanics; The Benjamin/Cummings Publishing Company: San Francisco, CA, USA, 1978. [Google Scholar]
- Prykarpatsky, A.; Mykytyuk, I. Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998. [Google Scholar]
- Kupershmidt, B.A. Integrable systems. Proc. Natl. Acad. Sci. USA 1984, 81, 6562–6563. [Google Scholar] [CrossRef]
- Kostant, B. The solution to a generalized Toda lattice and representation theory. Adv. Math. 1979, 34, 195–338. [Google Scholar] [CrossRef]
- Novikov, S.; Manakov, S.V.; Pitaevskii, L.P.; Zakharov, V.E. Theory of Solitons: The Inverse Scattering Method; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Popowicz, Z. The fully supersymmetric AKNS equations. J. Phys. A Math. Gen. 1990, 23, 1127–1136. [Google Scholar] [CrossRef]
- Babelon, O.; Viallet, C.-M. Hamiltonian structures and Lax equations. Phys. Lett. B 1990, 237, 411–416. [Google Scholar] [CrossRef]
- Prykarpatsky, A.K.; Samoylenko, V.H.; Andrushkiw, R.O.; Mitropolsky, Y.O.; Prytula, M.M. Algebraic structure of the gradient-holonomic algorithm for Lax integrable nonlinear dynamical systems. I. J. Math. Phys. 1994, 35, 1763–1777. [Google Scholar] [CrossRef]
- Magri, F. A simple model of the integrable Hamiltonian equation. J. Math. Phys. 1978, 19, 1156–1162. [Google Scholar] [CrossRef]
- Lax, P.D. Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 1968, 21, 467–490. [Google Scholar] [CrossRef]
- Berezin, F.A. Introduction to Superanalysis; Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Cianci, R.; Francaviglia, M.; Volovich, I. Variational calculus and Poincaré–Cartan formalism on supermanifolds. J. Phys. A 1995, 28, 723–734. [Google Scholar] [CrossRef]
- Vladimirov, V.S.; Volovich, I.V. Superanalysis-II. Integral calculus. Theor. Math. Phys. 1984, 60, 743–765. [Google Scholar] [CrossRef]
- Prykarpatski, A.K.; Kycia, R.A.; Dilnyi, V.M. On Superization of Nonlinear Integrable Dynamical Systems. Symmetry 2025, 17, 125. [Google Scholar] [CrossRef]
- Brunelli, J.C.; Das, A. The supersymmetric two-boson hierarchies. Phys. Lett. B 1994, 337, 303–307. [Google Scholar] [CrossRef]
- Hentosh, O. Lax Integrable Supersymmetric Hierarchies on Extended Phase Spaces of Two Anticommuting Variables. In Modern Analysis and Applications; Operator Theory: Advances and Applications Series; Birkhäuser: Basel, Switzerland, 2009; Volume 191, pp. 365–379. [Google Scholar]
- Labelle, M.; Mathieu, P. A new N = 2 supersymmetric Kortteweg-de Vries equation. J. Math. Phys. 1991, 32, 923–927. [Google Scholar] [CrossRef]
- Laberge, C.-A.; Mathieu, P. N = 2 superconformal algebra and integrable O(2) fermionic extensions of the Korteweg–de Vries equation. Phys. Lett. B 1988, 215, 718–722. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prykarpatski, A.K.; Vovk, M.I.; Pukach, P.Y.; Prykarpatskyy, Y.A. Super Lie–Poisson Structures, Their Deformations, and Related New Nonlinear Integrable Super-Hamiltonian Systems. Symmetry 2025, 17, 1925. https://doi.org/10.3390/sym17111925
Prykarpatski AK, Vovk MI, Pukach PY, Prykarpatskyy YA. Super Lie–Poisson Structures, Their Deformations, and Related New Nonlinear Integrable Super-Hamiltonian Systems. Symmetry. 2025; 17(11):1925. https://doi.org/10.3390/sym17111925
Chicago/Turabian StylePrykarpatski, Anatolij K., Myroslava I. Vovk, Petro Ya. Pukach, and Yarema A. Prykarpatskyy. 2025. "Super Lie–Poisson Structures, Their Deformations, and Related New Nonlinear Integrable Super-Hamiltonian Systems" Symmetry 17, no. 11: 1925. https://doi.org/10.3390/sym17111925
APA StylePrykarpatski, A. K., Vovk, M. I., Pukach, P. Y., & Prykarpatskyy, Y. A. (2025). Super Lie–Poisson Structures, Their Deformations, and Related New Nonlinear Integrable Super-Hamiltonian Systems. Symmetry, 17(11), 1925. https://doi.org/10.3390/sym17111925

