Next Article in Journal
Distinguishing Strongly Interacting Dark Matter Spikes via EMRI Gravitational Waves
Previous Article in Journal
A Robust Lagrangian Implicit Material Point Method for Accurate Large-Deformation Analysis
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Symmetry and Blow-Up for 3D Modified CBF Equations in Sobolev–Gevrey Spaces

Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia
*
Author to whom correspondence should be addressed.
Symmetry 2025, 17(11), 1877; https://doi.org/10.3390/sym17111877
Submission received: 14 September 2025 / Revised: 23 October 2025 / Accepted: 30 October 2025 / Published: 5 November 2025
(This article belongs to the Section Mathematics)

Abstract

We study the three-dimensional modified critical homogeneous convective Brinkman–Forchheimer equations. Local existence and uniqueness are obtained via the Fixed Point Theorem, and under the assumption of finite maximal existence time, we establish blow-up criteria in Sobolev–Gevrey spaces. The model preserves Euclidean invariances (translations and rotations) and, when α = 0 , the critical scaling symmetry of the 3 D Navier-Stokes system. The blow-up thresholds are shown to depend mainly on the Gevrey structure rather than on any loss of symmetry.

1. Introduction

The critical homogeneous convective Brinkman–Forchheimer system in three spatial dimensions is described by the following equations (refer to [1,2]):
t u μ Δ u + u · u + α u + β | u | 2 u + p = 0 in R + × R 3 div u = 0 , in R + × R 3 u ( 0 , x ) = u 0 ( x ) in R 3 ,
In this formulation, u ( t , x ) denotes the velocity field at time t > 0 and position x R 3 , while p ( t , x ) represents the associated pressure field. The parameters μ , α , β > 0 correspond to the effective viscosity (Brinkman term), the permeability of the porous medium (Darcy term), and the nonlinear drag (Forchheimer term), respectively. The model preserves the basic Euclidean invariances (translations and rotations), and when α = 0 , it shares the critical scaling of the 3 D Navier-Stokes system [1,3,4].
In recent years, many authors have proposed modifications to the classical form of the convective Brinkman–Forchheimer equations in three dimensions; see, for instance, [5,6].
The present study explores an alternative formulation by replacing the nonlinear term | u | 2 u with the component-wise cubic term k = 1 3 u k 3 e k . For a more detailed discussion, the reader may consult [7,8]. The modified system we investigate is expressed as follows:
t u μ Δ u + u · u + α u + β k = 1 3 u k 3 e k + p = 0 , in R + × R 3 , div u = 0 , in R + × R 3 , u ( 0 , x ) = u 0 ( x ) in R 3 .
Here, ( e 1 , e 2 , e 3 ) denotes the canonical basis of R 3 . This change in the term is technically necessary, and it does not affect the scaling of the equation nor the different properties of such a solution. The component-wise cubic nonlinearity also respects coordinate-permutation and parity symmetries, so the geometric invariances of the flow are retained.
In this work, we study the blow-up criterion of solutions. In recent years, several authors studied this phenomenon of many fluid mechanics equations in various spaces. In the case of a three-dimensional magnetohydrodynamic system ( M H D ) , Benameur and Selmi in [9] established the blow-up result in the Lei–Lin–Gevrey spaces X a , σ 1 ( R 3 ) . Also, in [10] the authors give a lower bound of solutions in Sobolev–Gevrey spaces. While, we refer to [11,12] and the references therein for the result related to Navier–Stokes equations ( N S E ) .
Although many results exist on the Navier–Stokes and classical Brinkman–Forchheimer equations, the influence of Gevrey regularity on symmetry-preserving blow-up remains unclear. This paper fills this gap by establishing new blow-up criteria in Sobolev–Gevrey spaces and showing how analytic regularity controls singularity formation.
The present system differs from the classical convective Brinkman–Forchheimer and Navier–Stokes equations by replacing the nonlinear term | u | 2 u with the component-wise cubic term k = 1 3 u k 3 e k , which preserves symmetry but modifies the nonlinear structure. This change, together with the use of Sobolev–Gevrey spaces, allows a finer analysis of blow-up behavior and extends previous results obtained for the Navier–Stokes and ( M H D ) systems.
The result that concerns us is that in [13] Benameur answered this question: Do the blow-up phenomena depend on the chosen space or on the nonlinear part ( u · u ) in the case of Navier–Stokes equations ( N S E ) ? To answer this question, the author gives an exponential type of blow-up profile in Sobolev–Gevrey spaces H a , σ s ( R 3 ) with s > 3 2 and proves that the blow-up phenomena depends on the chosen space. Also, in [14] the authors improve this result with less regularity on the initial data s = 1 . To ameliorate these previous results, the author in [8] studied this type of explosion in the case of critical homogeneous convective Brinkman–Forchheimer equations and in the Sobolev–Gevrey spaces H a , σ s ( R 3 ) with s > 3 2 , where the nonlinear parts of this equation are given by u · u + β | u | 2 u .
Inspired by these works [8,13,14] in this present work, we focus on the previous question. Precisely, we study the blow-up phenomena in the case of three-dimensional modified homogeneous convective Brinkman–Forchheimer equations and in the Sobolev–Gevrey spaces H a , σ s ( R 3 ) with Sobolev index s = 1 .
The convective Brinkman–Forchheimer model is widely used to describe viscous flows through porous media, such as petroleum extraction, groundwater filtration, and biological tissues. Understanding the blow-up and stability mechanisms in such models provides valuable insight into how viscosity, damping, and nonlinear convection interact in complex porous flows. The present study refines previous mathematical results by showing that singularity formation depends mainly on the Gevrey regularity rather than on symmetry breaking. This clarification contributes to the theoretical understanding of nonlinear fluid dynamics and highlights the importance of analytic regularity in predicting finite-time explosion in physical systems.
Before presenting our main findings, we begin by defining the non-homogeneous Sobolev–Gevrey spaces. Given parameters a > 0 ,   γ ( 0 , 1 ) , and s R , we consider the space
H a , γ s ( R 3 ) : = u L 2 ( R 3 ) | 1 + | ξ | 2 s / 2 e a | ξ | γ u ^ ( ξ ) L 2 ( R 3 ) ,
which is equipped with the norm
u H a , γ s ( R 3 ) : = R 3 1 + | ξ | 2 s e 2 a | ξ | γ | u ^ ( ξ ) | 2 d ξ 1 / 2 .
The corresponding inner product on this space is defined by
u , v H a , γ s ( R 3 ) : = e a | D | γ u , e a | D | γ v H s ( R 3 ) ,
where the operator | D | = ( Δ ) 1 / 2 denotes the square root of the negative Laplacian, and it is defined by the Fourier transform
( Δ ) 1 / 2 u ^ ( ξ ) = | ξ | u ^ ( ξ ) .
Since e a | ξ | γ is a radial multiplier, the H a , γ s norm is rotation-invariant; this symmetry-compatibility is used in our estimates.
With these definitions in place, we now turn to the statement of our primary results. The first of these addresses the issue of local well-posedness and is stated as follows:
Theorem 1.
For a > 0 and γ ( 0 , 1 ) . Suppose the initial data u 0 H a , γ 1 ( R 3 ) satisfies the divergence-free condition div u 0 = 0 . Then, there exists a positive time T > 0 such that Equation (1) admits a unique solution u C ( [ 0 , T ] , H a , γ 1 ( R 3 ) ) .
Now, let us suppose that the maximal time of existence T a , γ * , as given by Theorem 1, is finite. Under this assumption, we establish blow-up criteria for the solution u C ( [ 0 , T a , γ * ) , H a , γ 1 ( R 3 ) ) , which corresponds to the maximal solution of Equation (1). Our main result in this regard is stated in the following theorem:
Theorem 2.
Let a > 0 and γ ( 0 , 1 ) . Consider u C ( [ 0 , T a , γ * ) , H a , γ 1 ( R 3 ) ) as the maximal solution to Equation (1), as constructed in Theorem 1. If the maximal time T a , γ * is finite, then the following assertions hold:
(i)
   lim sup t T a , γ * u ( t ) H a , γ 1 ( R 3 ) = .
(ii)
   t T a , γ * F ( e a γ | . | γ u ) ( z ) L 1 ( R 3 ) 2 d z = , t [ 0 , T a , γ * ) .
(iii)
   1 2 ( β + μ 1 ) ( T a , γ * t ) F ( e a γ | . | γ u ) ( t ) L 1 2 , t [ 0 , T a , γ * ) .
(iv)
   C 3 ( T a , γ * t ) 2 ( γ 0 + γ ) + γ γ 0 3 γ 0 exp a C 2 ( T a , γ * t ) γ 3 u ( t ) H a , γ 1 .
Here, C 2 = C 2 ( β , μ , γ , u 0 ) > 0 and C 3 = C 3 ( β , μ , a , γ , γ 0 , u 0 ) > 0 . Moreover, 2 γ 0 denotes the integer part of 2 γ .
These blow-up criteria are formulated in a symmetry-aware manner and remain stable under translations and rotations.
The structure of the paper is as follows: In Section 2, we revisit some classical results and present new auxiliary lemmas. Section 3 is dedicated to establishing the local well-posedness of the system. In Section 4, we prove Theorem 2. The proof relies on embedding results for Sobolev spaces, Lemma (1), and an energy estimate from the literature (see [7,8]).
u ( t ) L 2 2 + 2 μ 0 t u L 2 2 + 2 α 0 t u L 2 2 + 2 3 β 0 t u L 4 4 u 0 L 2 2 , t 0 .
Equation (2) is the standard energy estimate established in [7,8].
We emphasize that the thresholds we obtain are governed by the Gevrey regularity, rather than by any loss of isotropic symmetry.

2. Preliminary Results

Lemma 1
([13]). For σ > 3 2 , we have
u ^ L 1 ( R 3 ) C σ u L 2 ( R 3 ) 1 3 2 σ u H ˙ σ ( R 3 ) 3 2 σ ,
with C σ = 2 π 3 ( 2 σ 3 1 ) 3 4 σ + ( 2 σ 3 1 ) 1 + 3 4 σ .
Moreover, for all σ 0 > 3 2 , there is B ( σ 0 ) > 0 such that
C σ B ( σ 0 ) , σ σ 0 .
Before proceeding with the next lemma, we recall the definition of the homogeneous Sobolev–Gevrey space that will be frequently used in the following estimates:
Definition 1.
For a > 0 and γ ( 0 , 1 ) , we denote by H ˙ a , γ 1 ( R 3 ) the homogeneous Sobolev–Gevrey space equipped with the norm
u H ˙ a , γ 1 ( R 3 ) = R 3 | ξ | 2 e 2 a | ξ | γ | u ^ ( ξ ) | 2 d ξ 1 / 2 .
Lemma 2.
Let a > 0 , γ ( 0 , 1 ) and γ = 1 + γ 2 . Then, for any u H a , γ 1 ( R 3 ) , we have
F ( e a γ | . | γ u ) ( t ) L 1 C γ u H a , γ 1
F ( e a γ | . | γ u ) ( t ) L 1 C γ u H ˙ a γ , γ 1 .
where C γ = 4 π γ ( 2 a ( 1 γ ) ) 1 γ Γ 1 γ 1 / 2 and C γ = 4 π γ ( 2 a ( γ γ ) ) 1 γ Γ 1 γ 1 / 2 .
Proof. 
From the Cauchy–Shwarz inequality, firstly, we have
F ( e a γ | . | γ u ) ( t ) L 1 = R 3 e a γ | ξ | γ | u ^ ( ξ ) | d ξ = R 3 e ( a γ a ) | ξ | γ | ξ | | ξ | e a | ξ | γ | u ^ ( ξ ) | d ξ R 3 e 2 ( a γ a ) | ξ | γ | ξ | 2 d ξ 1 2 R 3 | ξ | 2 e 2 a | ξ | γ | u ^ ( ξ ) | 2 d ξ 1 2 C γ u H ˙ a , γ 1 C γ u H a , γ 1 .
Secondly, we have
F ( e a γ | . | γ u ) ( t ) L 1 = R 3 e a γ | ξ | γ | u ^ ( ξ ) | d ξ = R 3 e a ( γ γ ) | ξ | γ | ξ | | ξ | e a γ | ξ | γ | u ^ ( ξ ) | d ξ R 3 e 2 a ( γ γ ) | ξ | γ | ξ | 2 d ξ 1 / 2 R 3 | ξ | 2 e 2 a γ | ξ | γ | u ^ ( ξ ) | 2 d ξ 1 / 2 C γ u H ˙ a γ , γ 1 .
Lemma 3.
Let a > 0 and γ ( 0 , 1 ) . Then, for any u i H a , γ 1 ( R 3 ) with i = 1 , 2 , we have
i = 1 2 u i H a , γ 1 ( R 3 )
i = 1 2 u i H a , γ 1 2 k = 1 2 u k H a , γ 1 j k 2 F ( e a γ | . | γ u j ) L 1
i = 1 2 u i H a , γ 1 C γ i = 1 2 u i H a , γ 1 .
Proof. 
Firstly, we have
i = 1 2 u i H a , γ 1 = R 3 1 + | ξ | 2 e 2 a | ξ | γ | u 1 u 2 ^ ( ξ ) | 2 d ξ R 3 1 + | ξ | 2 e 2 a | ξ | γ ( | u 1 ^ | | u 2 ^ | ) 2 ( ξ ) d ξ R 3 η 1 + | ξ | 2 1 2 e a | ξ | γ | u 1 ^ ( ξ η ) | | u 2 ^ ( η ) | d η 2 d ξ R 3 ( | η | < | ξ η | 1 + | ξ | 2 1 2 e a | ξ | γ | u 1 ^ ( ξ η ) | | u 2 ^ ( η ) | d η + | η | > | ξ η | 1 + | ξ | 2 1 2 e a | ξ | γ | u 1 ^ ( ξ η ) | | u 2 ^ ( η ) | d η ) 2 d ξ
Using the following inequalities [13]:
( 1 + | ξ | 2 ) 1 2 2 1 + max | ξ η | , | η | 2 1 2 e a | ξ | γ e a max ( | ξ η | , | η | ) γ e a γ min ( | ξ η | , | η | ) γ ,
we obtain
i = 1 2 u i H a , γ 1 R 3 ( 2 | η | < | ξ η | ( 1 + | ξ η | 2 ) 1 2 e a | ξ η | γ | u 1 ^ ( ξ η ) | e a γ | η | γ | u 2 ^ ( η ) | d η + 2 | η | > | ξ η | e a γ | ξ η | γ | u 1 ^ ( ξ η ) | ( 1 + | η | 2 ) 1 2 e a | η | γ | u 2 ^ ( η ) | d η ) 2 d ξ 2 R 3 | η | < | ξ η | ( 1 + | ξ η | 2 ) 1 2 e a | ξ η | γ | u 1 ^ ( ξ η ) | e a γ | η | γ | u 2 ^ ( η ) | d η 2 d ξ + 2 R 3 | η | > | ξ η | e a γ | ξ η | γ | u 1 ^ ( ξ η ) | ( 1 + | η | 2 ) 1 2 e a | η | γ | u 2 ^ ( η ) | d η 2 d ξ 2 1 + | ξ | 2 1 2 e a | ξ | γ | u 1 ^ ( ξ ) | e a γ | ξ | γ | u 2 ^ ( ξ ) | L 2 2 + 2 1 + | ξ | 2 1 2 e a | ξ | γ | u 2 ^ ( ξ ) | e a γ | ξ | γ | u 1 ^ ( ξ ) | L 2 2 2 1 + | ξ | 2 1 2 e a | ξ | γ | u 2 ^ ( ξ ) | L 2 2 e a γ | ξ | γ | u 2 ^ ( ξ ) | L 1 2 + 2 1 + | ξ | 2 1 2 e a | ξ | γ | u 2 ^ ( ξ ) | L 2 2 e a γ | ξ | γ | u 1 ^ ( ξ ) | L 1 2 2 u 2 H a , γ 1 F ( e a γ | . | γ u 1 ) L 1 + 2 u 1 H a , γ 1 F ( e a γ | . | γ u 2 ) L 1 .
Then, Equations (5) and (6) are proved.
Secondly, combining Equations (6) and (3), we can deduce that Equation (7) and the proof of Lemma 3 is finished. □
Lemma 4.
Let a > 0 and γ ( 0 , 1 ) . Then, for any u i H a , γ 1 ( R 3 ) with i = 1 , 2 , we have
F ( e a γ | . | γ ( u 1 u 2 ) ) L 1 F ( e a γ | . | γ u 1 ) L 1 F ( e a γ | . | γ u 2 ) L 1 .
Proof. 
From the elementary inequality
e a γ | ξ | γ e a γ | ξ η | γ e a γ | η | γ ,
we have
F ( e γ | . | γ ( u 1 u 2 ) ) L 1 = R 3 e a γ | ξ | γ | u 1 u 2 ^ ( ξ ) | d ξ R 3 e a γ | ξ | γ | u 1 ^ | | u 2 ^ | ( ξ ) d ξ R 3 R 3 e a γ | ξ | γ | u 1 ^ ( ξ η ) | | u 2 ^ ( η ) | d η d ξ e a γ | ξ | γ | u 1 ^ ( ξ ) | e a γ | ξ | γ | u 2 ^ ( ξ ) | L 1 .
Therefore, Young’s inequality implies
F ( e γ | . | γ ( u 1 u 2 ) ) L 1 e a γ | ξ | γ | u 1 ^ ( ξ ) | L 1 e a γ | ξ | γ | u 2 ^ ( ξ ) | L 1 F ( e a γ | . | γ u 1 ) L 1 F ( e a γ | . | γ u 2 ) L 1 .
Lemma 5.
Let a > 0 and γ ( 0 , 1 ) . Then, for any u i H a , γ 1 ( R 3 ) with i = 1 , 2 , 3 , we have
i = 1 3 u i H a , γ 1 ( R 3 )
i = 1 3 u i H a , γ 1 4 k = 1 3 u k H a , γ 1 j k F ( e a γ | . | γ u j ) L 1
i = 1 3 u i H a , γ 1 C γ i = 1 3 u i H a , γ 1 .
Proof. 
Firstly, using Equation (6) twice and Lemma 4 we get
i = 1 3 u i H a , γ 1 = u 1 u 2 u 3 H a , γ 1 2 ( u 2 u 3 ) H a , γ 1 F ( e a γ | . | γ u 1 ) L 1 + 2 u 1 H a , γ 1 F ( e γ | . | γ ( u 2 u 3 ) ) L 1 2 2 u 3 H a , γ 1 F ( e a γ | . | γ u 2 ) L 1 + 2 u 2 H a , γ 1 F ( e a γ | . | γ u 3 ) L 1 F ( e a γ | . | γ u 1 ) L 1 + 2 u 1 H a , γ 1 F ( e a γ | . | γ u 2 ) L 1 F ( e a γ | . | γ u 3 ) L 1 4 u 3 H a , γ 1 F ( e a γ | . | γ u 2 ) L 1 F ( e a γ | . | γ u 1 ) L 1 + 4 u 2 H a , γ 1 F ( e a γ | . | γ u 3 ) L 1 F ( e a γ | . | γ u 1 ) L 1 + 4 u 1 H a , γ 1 F ( e a γ | . | γ u 2 ) L 1 F ( e a γ | . | γ u 3 ) L 1 .
Then, Equations (9) and (10) are proved.
Secondly, combining Equations (10) and (3), we can deduce that Equation (11) and the proof of Lemma 5 is finished. □
Lemma 6.
Let a > 0 and γ ( 0 , 1 ) . Then, for any u i L [ 0 , T ] , H a , γ 1 ( R 3 ) with i = 1 , 2 , 3 , we have
0 t e μ ( t z ) Δ P ( u 1 · u 2 ) d z H a , γ 1 C γ μ 1 2 T 1 2 u 1 L T ( H a , γ 1 ) u 2 L T ( H a , γ 1 ) 0 t e μ ( t z ) Δ P u 1 u 2 u 3 d z H a , γ 1 C γ T u 1 L T ( H a , γ 1 ) u 2 L T ( H a , γ 1 ) u 3 L T ( H a , γ 1 ) .
Proof. 
Firstly, using Equation (7), we get
0 t e μ ( t z ) Δ P ( u 1 · u 2 ) d z H a , γ 1 0 t e μ ( t z ) Δ div ( u 1 u 2 ) H a , γ 1 d z 0 t R 3 | ξ | 2 e 2 μ ( t z ) | ξ | 2 1 + | ξ | 2 e 2 a | ξ | γ | ( u 1 u 2 ^ ) ( z , ξ ) | 2 d ξ 1 / 2 d z 0 t c μ ( t z ) u 1 u 2 H a , γ 1 d z 0 t C γ μ ( t z ) u 1 H a , γ 1 u 2 H a , γ 1 d z C γ μ 1 2 T 1 2 u 1 L T ( H a , γ 1 ) u 2 L T ( H a , γ 1 ) .
Secondly, using Equation (11), we obtain
0 t e μ ( t z ) Δ P u 1 u 2 u 3 d z H a , γ 1 0 t e μ ( t z ) Δ u 1 u 2 u 3 H a , γ 1 d z 0 t R 3 e 2 μ ( t z ) | ξ | 2 1 + | ξ | 2 e 2 a | ξ | γ | F ( u 1 u 2 u 3 ) ( z , ξ ) | 2 d ξ 1 / 2 d z 0 t R 3 1 + | ξ | 2 e 2 a | ξ | γ | F ( u 1 u 2 u 3 ) ( z , ξ ) | 2 d ξ 1 / 2 d z 0 t u 1 u 2 u 3 H a , γ 1 d z C γ T u 1 L T ( H a , γ 1 ) u 2 L T ( H a , γ 1 ) u 3 L T ( H a , γ 1 ) .

3. Proof of Theorem 1

The proof relies on the Fixed Point Theorem applied to a suitable operator in the Sobolev–Gevrey space H a , γ 1 ( R 3 ) . We establish uniform estimates for the nonlinear terms and show that the operator is a contraction for sufficiently small T > 0 .
According to the Duhamel formula, the integral form of Equation (1) is given by
u ( t ) = e μ t Δ u 0 + A ( u ) + B ( u , u ) + C ( u )
where
e μ t Δ u 0 = F 1 ξ e μ t Δ u 0 ^ ( ξ ) A ( u ) = α 0 t e μ ( t z ) Δ u d z B ( u , u ) = 0 t e μ ( t z ) Δ P ( u · u ) d z C ( u ) = β j = 1 3 0 t e μ ( t z ) Δ P u j 3 e j d z .
For a given T > 0 , we introduce the operator
O : S T C T ( H a , γ 1 ( R 3 ) ) u O ( u ) = e μ t Δ u 0 + A ( u ) + B ( u , u ) + C ( u )
where S T is the closed subset of C T ( H a , γ 1 ( R 3 ) ) defined by
S T = u C T ( H a , γ 1 ( R 3 ) ) ; u L T H a , γ 1 2 u 0 H a , γ 1 .
To apply the Fixed Point Theorem, let T > 0 be sufficiently small such that the following condition is satisfied:
α T + 4 C γ μ 1 2 T 1 2 u 0 H a , γ 1 + 12 C γ β T u 0 H a , γ 1 2 1 2 .
Firstly, we wish to give the stability condition of the Fixed Point argument:
O S T S T .
To do this, use the fact that u S T , Lemma 6 and Equation (12), we obtain
O ( u ) ( t ) H a , γ 1 e μ t Δ u 0 H a , γ 1 + A ( u ) H a , γ 1 + B ( u , u ) H a , γ 1 + C ( u ) H a , γ 1 u 0 H a , γ 1 + α T u L T ( H a , γ 1 ) + C γ μ 1 2 T 1 2 u L T ( H a , γ 1 ) 2 + C γ β T u L T ( H a , γ 1 ) 3 u 0 H a , γ 1 + 2 α T u 0 H a , σ 1 + 4 C γ μ 1 2 T 1 2 u 0 L T ( H a , γ 1 ) 2 + 8 C γ β T u 0 L T ( H a , γ 1 ) 3 1 + 2 α T + 4 C γ μ 1 2 T 1 2 u 0 L T ( H a , γ 1 ) + 8 C γ β T u 0 L T ( H a , γ 1 ) 2 u 0 H a , γ 1 2 u 0 H a , γ 1 .
Secondly, let w = v u . We shall prove that O is a contraction mapping on S T . For this purpose, we choose T > 0 sufficiently small so that Equation (12) holds. Using Lemma 6 and the above condition, we obtain, for all u , v S T ,
O ( v ) ( t ) O ( u ) ( t ) H a , γ 1 α 0 t e μ ( t z ) Δ w d z H a , γ 1 + 0 t e μ ( t z ) Δ P ( v · w ) d z H a , γ 1 + 0 t e μ ( t z ) Δ P ( w · u ) d z H a , γ 1 + j = 1 3 β 0 t e μ ( t z ) Δ P ( v j 3 u j 3 ) e j d z H a , γ 1 α 0 t e μ ( t z ) Δ w H a , γ 1 d z + 0 t e μ ( t z ) Δ P ( v · w ) H a , γ 1 d z + 0 t e μ ( t z ) Δ P ( w · u ) H a , γ 1 d z + β j = 1 3 0 t e μ ( t z ) Δ P ( v j 2 w j + v j u j w j + u j 2 w j ) e j H a , γ 1 d z α T w L T ( H a , γ 1 ) + C γ μ 1 2 T 1 2 v H a , γ 1 w L T ( H a , γ 1 ) + C γ μ 1 2 T 1 2 u H a , γ 1 w L T ( H a , γ 1 ) + C γ β T v L T ( H a , γ 1 ) 2 + v L T ( H a , γ 1 ) u L T ( H a , γ 1 ) + u L T ( H a , γ 1 ) 2 w L T ( H a , γ 1 ) α T w L T ( H a , γ 1 ) + 4 C γ μ 1 2 T 1 2 u 0 H a , γ 1 w L T ( H a , γ 1 ) + 12 C γ β T u 0 H a , γ 1 2 w L T ( H a , γ 1 ) α T + 4 C γ μ 1 2 T 1 2 u 0 H a , γ 1 + 12 C γ β T u 0 H a , γ 1 2 v u L T ( H a , γ 1 ) 1 2 v u L T ( H a , γ 1 ) .
Consequently, Fixed Point Theorem guarantees that there is a unique solution u C ( [ 0 , T ] , H a , γ 1 ( R 3 ) ) . □

4. Proof of Theorem 2

Before presenting the proof, we note that the argument follows the same analytical techniques as in [8,14], relying on standard energy estimates in the Sobolev–Gevrey setting and on symmetry-preserving estimates to obtain the blow–up criteria.
For a > 0 and γ ( 0 , 1 ) . Let u C ( [ 0 , T a , γ * ) , H a , γ 1 ( R 3 ) ) be the maximal solution to Equation (1) given by Theorem 1. Suppose that the maximal time T a , γ * of existence of the solution is finite.

4.1. Proof of Theorem 2 (i)

We want to prove the inequality ( i ) by contradiction. For this, assume that the inequality ( i ) is not valid. So that, if the function u is assumed to be bounded, then there exists M > 0 such that
u ( t ) H a , γ 1 ( R 3 ) M , t [ 0 . T a , γ * ) .
Firstly, taking the H a , γ 1 ( R 3 ) inner product of the first equation of Equation (1) with u, we obtain
1 2 d d t u ( t ) H a , γ 1 2 + μ u ( t ) H a , γ 1 2 + α u ( t ) H a , γ 1 2 β j = 1 3 | < u j 3 e j ; u j e j > H a , γ 1 | + | < u · u ; u > H a , γ 1 | .
By applying Equations (11)–(7) and the fact that H a , γ 1 ( R 3 ) be an algebra space, we infer
1 2 d d t u ( t ) H a , γ 1 2 + μ u ( t ) H a , γ 1 2 + α u ( t ) H a , γ 1 2 β u 3 H a , γ 1 u H a , γ 1 + u u H a , γ 1 u H a , γ 1 C γ β u H a , γ 1 4 + C γ u H a , γ 1 2 u H a , γ 1 .
Hölder’s inequality gives
1 2 d d t u ( t ) H a , γ 1 2 + μ 2 u ( t ) H a , γ 1 2 + α u ( t ) H a , γ 1 2 C γ β u H a , γ 1 4 + C γ 2 2 μ u H a , γ 1 4 .
This implies that
d d t u ( t ) H a , γ 1 2 + μ u ( t ) H a , γ 1 2 + 2 α u ( t ) H a , γ 1 2 2 C γ β u H a , γ 1 4 + C γ 2 μ 1 u H a , γ 1 4 2 C γ β + C γ 2 μ 1 u H a , γ 1 4 .
Hence, integrating over ( 0 , t ) and using Equation (13), one gets
u ( t ) H a , γ 1 2 + μ 0 t u ( z ) H a , γ 1 2 d z + 2 α 0 t u ( z ) H a , γ 1 2 d z u 0 H a , γ 1 2 + 2 C γ β + C γ 2 μ 1 0 t u ( z ) H a , γ 1 4 d z u 0 H a , γ 1 2 + 2 C γ β + C γ 2 μ 1 M 4 .
Then, for all t [ 0 , T a , γ * ) one deduces
0 T a , γ * u ( z ) H a , γ 1 2 d z M 1
with M 1 = u 0 H a , γ 1 2 + 2 C γ β + C γ 2 μ 1 M 4 μ .
Secondly, suppose that ( n ) is a sequence in ( 0 , T a , γ * ) such that n T a , γ * as n . We want to prove that
lim sup n , m u ( n ) u ( m ) H a , γ 1 ( R 3 ) = 0
where 0 < n < m < T a , γ * , n , m N with n < m .
According to the integral form of Equation (1), we have
u ( n ) = e μ n Δ u 0 α 0 n e μ ( n z ) Δ u d z 0 n e μ ( n z ) Δ P ( u · u ) d z β 0 n e μ ( n z ) Δ P j = 1 3 u j 3 e j d z
and
u ( m ) = e μ m Δ u 0 α 0 m e μ ( m z ) Δ u d z 0 m e μ ( m z ) Δ P ( u · u ) d z β 0 m e μ ( m z ) Δ P j = 1 3 u j 3 e j d z .
Then,
u ( n ) u ( m ) = e μ n Δ e μ m Δ u 0 I n , m + α 0 n e μ ( m z ) Δ e μ ( n z ) Δ u d z J n , m + α n m e μ ( m z ) Δ u d z J m , n + 0 n e μ ( m z ) Δ e μ ( n z ) Δ P ( u · u ) d z K n , m + n m e μ ( m z ) Δ P ( u · u ) d z K m , n + β 0 n e μ ( m z ) Δ e μ ( n z ) Δ P j = 1 3 u j 3 e j d z L n , m + β n m e μ ( m z ) Δ P j = 1 3 u j 3 e j d z L m , n .
Now, let us prove that I n , m , J n , m , J m , n , K n , m , K m , n , L n , m and L m , n tend to zero in H a , γ 1 ( R 3 ) , as n , m go to .
Let us estimate I n , m H a , γ 1 , we have
I n , m H a , γ 1 2 = e μ n Δ e μ m Δ u 0 H a , γ 1 2 = R 3 e μ n | ξ | 2 e μ m | ξ | 2 ( 1 + | ξ | 2 ) e 2 a | ξ | γ u 0 ( ξ ) ^ | 2 d ξ R 3 e μ n | ξ | 2 e μ T a , γ * | ξ | 2 ( 1 + | ξ | 2 ) e 2 a | ξ | γ u 0 ( ξ ) ^ | 2 d ξ .
Put F n ( ξ ) = e μ n | ξ | 2 e μ T a , γ * | ξ | 2 ( 1 + | ξ | 2 ) e 2 a | ξ | γ | u 0 ( ξ ) ^ | 2 and F ( ξ ) = ( 1 + | ξ | 2 ) e 2 a | ξ | γ | u 0 ( ξ ) ^ | 2 . We have
0 F n F , n N , F L 1 ( R 3 ) , sin ce u 0 H a , γ 1 ( R 3 ) , F n 0 as n , a . e .
The Dominated Convergence Theorem gives
lim n R 3 F n ( ξ ) d ξ = 0
and
lim n , m I n , m H a , γ 1 2 = 0 .
For the estimation of J n , m H a , γ 1 using the Cauchy–Schwarz inequality, we have
J n , m H a , γ 1 α 0 n e μ ( m z ) Δ e μ ( n z ) Δ u H a , γ 1 d z α 0 n R 3 e μ ( m z ) | ξ | 2 e μ ( n z ) | ξ | 2 2 ( 1 + | ξ | 2 ) e 2 a | ξ | γ | u ^ ( ξ , z ) | 2 d ξ 1 2 d z α 0 n R 3 e 2 μ ( n z ) | ξ | 2 1 e μ ( m n ) | ξ | 2 2 ( 1 + | ξ | 2 ) e 2 a | ξ | γ | u ^ ( ξ , z ) | 2 d ξ 1 2 d z α 0 n R 3 1 e μ ( m n ) | ξ | 2 2 ( 1 + | ξ | 2 ) e 2 a | ξ | γ | u ^ ( ξ , z ) | 2 d ξ 1 2 d z α 0 n R 3 1 e μ ( T a , γ * n ) | ξ | 2 2 ( 1 + | ξ | 2 ) e 2 a | ξ | γ | u ^ ( ξ , z ) | 2 d ξ 1 2 d z α 0 T a , γ * R 3 1 e μ ( T a , γ * n ) | ξ | 2 2 ( 1 + | ξ | 2 ) e 2 a | ξ | γ | u ^ ( ξ , z ) | 2 d ξ 1 2 d z α ( T a , γ * ) 1 / 2 R 3 × [ 0 , T a , γ * [ 1 e μ ( T a , γ * n ) | ξ | 2 2 ( 1 + | ξ | 2 ) e 2 a | ξ | γ | u ^ ( ξ , z ) | 2 d ξ d z 1 2 .
Put
G n ( ξ , z ) = 1 e μ ( T a , γ * n ) | ξ | 2 2 ( 1 + | ξ | 2 ) e 2 a | ξ | γ | u ^ ( ξ , z ) | 2
and
G ( ξ , z ) = ( 1 + | ξ | 2 ) e 2 a | ξ | γ | u ^ ( ξ , z ) | 2 .
We have
0 G n G , n N , G L 1 ( R 3 ) by the inequality ( 13 ) , G n 0 as n , a . e .
By using the Dominated Convergence Theorem, one deduces
lim n R 3 G n ( ξ ) d ξ = 0
and
lim n , m J n , m H a , γ 1 2 = 0 .
For the estimation of J m , n H a , γ 1 using Equation (13), we have
J m , n H a , γ 1 α n m e μ ( m z ) Δ u H a , γ 1 d z α n m u H a , γ 1 d z α n T a , γ * u H a , γ 1 d z α M ( T a , γ * n ) .
As
lim n α M ( T a , γ * n ) = 0 ,
then
lim sup n , m J m , n H a , γ 1 2 = 0 .
For the estimation of K n , m H a , γ 1 using the Cauchy–Schwarz inequality, we have
K n , m H a , γ 1 0 n e μ ( m z ) Δ e μ ( n z ) Δ P ( u · u ) H a , γ 1 d z 0 n R 3 e μ ( m z ) | ξ | 2 e μ ( n z ) | ξ | 2 2 ( 1 + | ξ | 2 ) e 2 a | ξ | γ | u · u ^ ( ξ , z ) | 2 d ξ 1 2 d z 0 n R 3 e 2 μ ( n z ) | ξ | 2 1 e μ ( m n ) | ξ | 2 2 ( 1 + | ξ | 2 ) e 2 a | ξ | γ | u · u ^ ( ξ , z ) | 2 d ξ 1 2 d z 0 n R 3 1 e μ ( m n ) | ξ | 2 2 ( 1 + | ξ | 2 ) e 2 a | ξ | γ | u · u ^ ( ξ , z ) | 2 d ξ 1 2 d z 0 n R 3 1 e μ ( T a , γ * n ) | ξ | 2 2 ( 1 + | ξ | 2 ) e 2 a | ξ | γ | u · u ^ ( ξ , z ) | 2 d ξ 1 2 d z 0 T a , γ * R 3 1 e μ ( T a , γ * n ) | ξ | 2 2 ( 1 + | ξ | 2 ) e 2 a | ξ | γ | u · u ^ ( ξ , z ) | 2 d ξ 1 2 d z ( T a , γ * ) 1 / 2 R 3 × [ 0 , T a , γ * [ 1 e μ ( T a , γ * n ) | ξ | 2 2 ( 1 + | ξ | 2 ) e 2 a | ξ | γ | u · u ^ ( ξ , z ) | 2 d ξ d z 1 2 .
Put
H n ( ξ , z ) = 1 e μ ( T a , γ * n ) | ξ | 2 2 ( 1 + | ξ | 2 ) e 2 a | ξ | γ | u · u ^ ( ξ , z ) | 2
and
H ( ξ , z ) = ( 1 + | ξ | 2 ) e 2 a | ξ | γ | u · u ^ ( ξ , z ) | 2 .
We have
0 H n H , n N , H n 0 as n , a . e .
Hence, using the fact that the space H a , γ 1 ( R 3 ) is algebra and Equations (13)–(15) we obtain
R 3 × [ 0 , T a , γ * [ H ( ξ , z ) d z d ξ = R 3 × [ 0 , T a , γ * [ ( 1 + | ξ | 2 ) e 2 a | ξ | γ | u · u ^ ( ξ , z ) | 2 d z d ξ = 0 T a , γ * u · u H a , γ 1 2 d z c 0 T a , γ * u H a , γ 1 2 u H a , γ 1 2 d z c M 0 T a , γ * u H a , γ 1 2 d z c M M 1 < .
The Dominated Convergence Theorem gives
lim n R 3 × [ 0 , T a , γ * [ H n ( ξ , z ) d ξ = 0
and
lim n , m K n , m H a , γ 1 2 = 0 .
For the estimation of K m , n H a , γ 1 using he fact that the space H a , γ 1 ( R 3 ) is algebra, the inequalities (13)–(15) and the Cauchy–Shwarz inequality, we have
K m , n H a , γ 1 n m e μ ( m z ) Δ P ( u · u ) H a , γ 1 d z n m e μ ( m z ) Δ ( u · u ) H a , γ 1 d z n m u · u H a , γ 1 d z n T a , γ * u · u H a , γ 1 d z c n T a , γ * u H a , γ 1 u H a , γ 1 d z c M n T a , γ * u H a , γ 1 d z c M ( T a , γ * n ) 1 / 2 n T a , γ * u H a , γ 1 2 d z 1 / 2 c M ( T a , γ * n ) 1 / 2 0 T a , γ * u H a , γ 1 2 d z 1 / 2 c M ( M 1 ) 1 / 2 ( T a , γ * n ) 1 / 2 .
As
lim n c M ( M 1 ) 1 / 2 ( T a , γ * n ) 1 / 2 = 0 .
Then,
lim sup n , m K m , n H a , γ 1 2 = 0 .
For the estimation of L n , m H a , γ 1 , we have
L n , m H a , γ 1 β 0 n e μ ( m z ) Δ e μ ( n z ) Δ P j = 1 3 u j 3 e j H a , γ 1 d z β 0 n R 3 e μ ( m z ) | ξ | 2 e μ ( n z ) | ξ | 2 2 ( 1 + | ξ | 2 ) e 2 a | ξ | γ | F j = 1 3 u j 3 e j ( ξ , z ) | 2 d ξ 1 / 2 d z β 0 n R 3 e 2 μ ( n z ) | ξ | 2 1 e μ ( m n ) | ξ | 2 2 ( 1 + | ξ | 2 ) e 2 a | ξ | γ | F j = 1 3 u j 3 e j ( ξ , z ) | 2 d ξ 1 2 d z β 0 n R 3 1 e μ ( m n ) | ξ | 2 2 ( 1 + | ξ | 2 ) e 2 a | ξ | γ | F j = 1 3 u j 3 e j ( ξ , z ) | 2 d ξ 1 2 d z β 0 n R 3 1 e μ ( T a , γ * n ) | ξ | 2 2 ( 1 + | ξ | 2 ) e 2 a | ξ | γ | F ( j = 1 3 u j 3 e j ( ξ , z ) | 2 d ξ 1 2 d z β 0 T a , γ * R 3 1 e μ ( T a , γ * n ) | ξ | 2 2 ( 1 + | ξ | 2 ) e 2 a | ξ | γ | F ( j = 1 3 u j 3 e j ( ξ , z ) | 2 d ξ 1 2 d z β ( T a , γ * ) 1 / 2 R 3 × [ 0 , T a , γ * [ 1 e μ ( T a , γ * n ) | ξ | 2 2 ( 1 + | ξ | 2 ) e 2 a | ξ | γ | F ( j = 1 3 u j 3 e j ( ξ , z ) | 2 d ξ d z 1 2 .
Put
P n ( ξ , z ) = 1 e μ ( T a , γ * n ) | ξ | 2 2 ( 1 + | ξ | 2 ) e 2 a | ξ | γ | F ( j = 1 3 u j 3 e j ( ξ , z ) | 2
and
P ( ξ , z ) = ( 1 + | ξ | 2 ) e 2 a | ξ | γ | F ( j = 1 3 u j 3 e j ( ξ , z ) | 2 .
We have
0 P n P , n N , P n 0 as n , a . e .
Hence, using Equations (11)–(13) we obtain
R 3 × [ 0 , T a , γ * [ P ( ξ , z ) d z d ξ = R 3 × [ 0 , T a , γ * [ ( 1 + | ξ | 2 ) e 2 a | ξ | γ | F ( j = 1 3 u j 3 e j ( ξ , z ) | 2 d z d ξ C γ 2 0 T a , γ * u H a , γ 1 6 d z C γ 2 M 6 < .
The Dominated Convergence Theorem gives
lim n R 3 × [ 0 , T a , γ * [ P n ( ξ ) d ξ = 0
and
lim n , m L n , m H a , γ 1 2 = 0 .
For the estimation of L m , n H a , γ 1 using Equations (11)–(13) we have
L m , n H a , γ 1 β n m e μ ( m z ) Δ P j = 1 3 u j 3 e j H a , γ 1 d z β n m j = 1 3 u j 3 e j H a , γ 1 d z β n m u ( z ) H a , γ 1 3 d z C γ β n T a , γ * u ( z ) H a , γ 1 3 d z C γ M 3 β ( T a , γ * n ) .
As
lim n C γ M 3 β ( T a , γ * n ) = 0 ,
then,
lim sup n , m L m , n H a , γ 1 2 = 0 .
Finally, we can deduce that u ( n ) n N is a Cauchy sequence in the space H a , γ 1 ( R 3 ) . The space H a , γ 1 ( R 3 ) is a Banach space. Then, there exists u 0 * H a , γ 1 ( R 3 ) such that
lim sup n u ( n ) u 0 * H a , γ 1 ( R 3 ) = 0 .
Note that the limit u 0 * does not depend on ( n ) . Hence, we prove that the solution u can be extend to the interval [ 0 , T a , γ * + T 1 * ] . This is a contradiction, and so
lim sup t T a , γ * u ( t ) H a , γ 1 ( R 3 ) = .
This completes the proof of the Theorem 2 ( i ) .
Remark 1.
Taking into consideration the energy estimate Equation (2), we have
u ( t ) L 2 u 0 L 2 , t [ 0 , T a , γ * ) .
Then,
lim sup t T a , γ * u ( t ) H a , γ 1 ( R 3 ) = lim sup t T a , γ * u ( t ) H ˙ a , γ 1 ( R 3 ) = .

4.2. Proof of Theorem 2 (ii)

From Equation (14), we have
1 2 d d t u ( t ) H a , γ 1 2 + μ u ( t ) H a , γ 1 2 + α u ( t ) H a , γ 1 2 β k = 1 3 | < u k 3 e k ; u k e k > H a , γ 1 | + | < u ( t ) · u ( t ) ; u ( t ) > H a , γ 1 |
Using Equations (10)–(6), we obtain
1 2 d d t u ( t ) H a , γ 1 2 + μ u ( t ) H a , γ 1 2 + α u ( t ) H a , γ 1 2 β k = 1 3 | < e a | . | γ u k 3 e k ; e a | . | γ u k e k > H 1 | + | < e a | . | γ div ( u u ) ( t ) ; e a | . | γ u ( t ) > H 1 | β k = 1 3 | < e a | . | γ u k 3 e k ; e a | . | γ u k e k > H 1 | + | < e a | . | γ ( u u ) ( t ) ; e a | . | γ u ( t ) > H 1 | β k = 1 3 u k 3 e k ( t ) H a , γ 1 u ( t ) H a , γ 1 + ( u u ) ( t ) H a , γ 1 u ( t ) H a , γ 1 4 β F ( e a γ | . | γ u ) ( t ) L 1 2 u ( t ) H a , γ 1 2 + 4 F ( e a γ | . | γ u ) ( t ) L 1 u ( t ) H a , γ 1 u ( t ) H a , γ 1 .
Hölde’s inequality implies
1 2 d d t u ( t ) H a , γ 1 2 + μ 2 u ( t ) H a , γ 1 2 + α u ( t ) H a , γ 1 2 ( 4 β + 8 μ 1 ) F ( e a γ | . | γ u ) ( t ) L 1 2 u ( t ) H a , γ 1 2 .
or equivalently
d d t u ( t ) H a , γ 1 2 + μ u ( t ) H a , γ 1 2 + 2 α u ( t ) H a , γ 1 2 ( 8 β + 8 μ 1 ) F ( e a γ | . | γ u ) ( t ) L 1 2 u ( t ) H a , γ 1 2 .
Thereby, for any 0 t T < T a , γ * by applying Gronwall Lemma, one deduces
u ( T ) H a , γ 1 2 u ( t ) H a , γ 1 2 exp ( 8 β + 8 μ 1 ) t T F ( e a γ | . | γ u ) ( z ) L 1 2 d z .
Applying Equation (16), we infer
t T a , γ * F ( e a γ | . | γ u ) ( z ) L 1 ( R 3 ) 2 d z = , 0 t < T a , γ * .
This completes the proof of Theorem 2 ( i i ) .

4.3. Proof of Theorem 2 (iii)

Applying the Fourier transform with respect to the spatial variable in the first part of the Equation (1) and multiplying by u ^ ¯ , we obtain
t u ^ u ^ ¯ ( t , ξ ) + μ | ξ | 2 u ^ u ^ ¯ ( t , ξ ) + α u ^ u ^ ¯ ( t , ξ ) | + F ( u · u ) ( t , ξ ) · F k = 1 3 u k e k ( t , ξ ) ¯ + β F k = 1 3 u k 3 e k ( t , ξ ) · F k = 1 3 u k e k ( t , ξ ) ¯ = 0 .
Taking the real part yields
t | u ^ ( t , ξ ) | 2 + 2 μ | ξ | 2 | u ^ ( t , ξ ) | 2 + 2 α | u ^ ( t , ξ ) | 2 + 2 R e F ( u · u ) ( t , ξ ) · F k = 1 3 u k e k ( t , ξ ) ¯ + β [ F k = 1 3 u k 3 e k ( t , ξ ) · F k = 1 3 u k e k ( t , ξ ) ] ¯ = 0 .
This implies
t | u ^ ( t , ξ ) | 2 + 2 μ | ξ | 2 | u ^ ( t , ξ ) | 2 + 2 α | u ^ ( t , ξ ) | 2 2 | F ( u · u ) ( t , ξ ) | | F k = 1 3 u k e k ( t , ξ ) | + 2 β | F k = 1 3 u k 3 e k ( t , ξ ) | | F k = 1 3 u k e k ( t , ξ ) | .
Now, for ε > 0 and δ > 0 , we have
| u ^ ( t , ξ ) | 2 δ t | u ^ ( t , ξ ) | 2 = 1 1 + δ t | u ^ ( t , ξ ) | 2 δ + 2 .
Then,
t | u ^ ( t , ξ ) | 1 + δ + ε ( 1 + δ ) | u ^ ( t , ξ ) | 1 + δ + ε = | u ^ ( t , ξ ) | 2 δ t | u ^ ( t , ξ ) | 2 | u ^ ( t , ξ ) | 1 + δ + ε + 2 ε ( 1 + δ ) t | u ^ ( t , ξ ) | 1 + δ ( | u ^ ( t , ξ ) | 1 + δ + ε ) .
Multiplying Equation (18) by | u ^ ( t , ξ ) | 2 δ | u ^ ( t , ξ ) | 1 + δ + ε and using the Equation (19), we conclude
t | u ^ ( t , ξ ) | 1 + δ + ε 2 ( 1 + δ ) | u ^ ( t , ξ ) | 1 + δ + ε 2 ε ( 1 + δ ) t | u ^ ( t , ξ ) | 1 + δ ( | u ^ ( t , ξ ) | 1 + δ + ε ) + μ | ξ | 2 | u ^ ( t , ξ ) | 2 δ + 2 | u ^ ( t , ξ ) | 1 + δ + ε + α | u ^ ( t , ξ ) | 2 δ + 2 | u ^ ( t , ξ ) | 1 + δ + ε | F ( u · u ) ( t , ξ ) | | u ^ ( t , ξ ) | 2 δ + 1 | u ^ ( t , ξ ) | 1 + δ + ε + β | F k = 1 3 u k 3 e k ( t , ξ ) | | u ^ ( t , ξ ) | 2 δ + 1 | u ^ ( t , ξ ) | 1 + δ + ε .
By integrating from [ t , T ] [ 0 , T a , γ * ) , one gets
| u ^ ( T , ξ ) | 1 + δ 1 + δ 2 ε 1 + δ ln | u ^ ( T , ξ ) | 1 + δ + ε | u ^ ( t , ξ ) | 1 + δ + ε + μ | ξ | 2 t T | u ^ ( z , ξ ) | 2 δ + 2 | u ^ ( z , ξ ) | 1 + δ + ε d z + α t T | u ^ ( z , ξ ) | 2 δ + 2 | u ^ ( z , ξ ) | 1 + δ + ε d z 2 | u ^ ( t , ξ ) | 1 + δ 1 + δ + t T | F ( u · u ) ( z , ξ ) | | u ^ ( z , ξ ) | 2 δ + 1 | u ^ ( z , ξ ) | 1 + δ + ε d z + β t T | k = 1 3 F ( u k 3 e k ) ( z , ξ ) | | u ^ ( z , ξ ) | 2 δ + 1 | u ^ ( z , ξ ) | 1 + δ + ε d z .
Taking as ε , δ 0 + , we obtain
| u ^ ( T , ξ ) | + μ | ξ | 2 t T | u ^ ( z , ξ ) | d z + α t T | u ^ ( z , ξ ) | d z | u ^ ( t , ξ ) | + t T | F ( u · u ) ( z , ξ ) | d z + β t T | k = 1 3 F ( u k 3 e k ) ( z , ξ ) | d z | u ^ ( t , ξ ) | + t T | u ^ | ξ | u ^ | ( z , ξ ) d z + β t T | k = 1 3 F ( u k 3 e k ) ( z , ξ ) | d z | u ^ ( t , ξ ) | + t T η | u ^ ( z , ξ η ) | | u ^ ( z , η ) | d η d z + β t T | k = 1 3 F ( u k 3 e k ) ( z , ξ ) | d η d z .
Multiplying the above inequality by e a γ | ξ | γ and using the Equation (8), we have
e a γ | ξ | γ | u ^ ( T , ξ ) | + μ | ξ | 2 t T e a γ | ξ | γ | u ^ ( z , ξ ) | d z + α t T e a γ | ξ | γ | u ^ ( z , ξ ) | d z e a γ | ξ | γ | u ^ ( t , ξ ) | + t T η e a γ | ξ η | γ | u ^ ( z , ξ η ) | e a γ | η | γ | u ^ ( z , η ) | d η d z + β t T e a γ | ξ | γ | k = 1 3 F ( u k 3 e k ) ( z , ξ ) | d z .
Integrating with respect the space variable ξ R 3 and using product Young inequality, we can deduce
F ( e a γ | . | γ u ) ( T ) L 1 + μ t T F ( e a γ | . | γ Δ u ) ( z ) L 1 d z + α t T F ( e a γ | . | γ u ) ( z ) L 1 d z F ( e a γ | . | γ u ) ( t ) L 1 + t T F ( e a γ | . | γ u ) ( z ) L 1 F ( e a γ | . | γ u ) ( z ) L 1 d z + β t T F ( e a γ | . | γ u ) ( z ) L 1 3 d z .
The Cauchy–Schwarz inequality yields
F ( e a γ | . | γ u ) ( T ) L 1 + μ t T F ( e a γ | . | γ Δ u ) ( z ) L 1 d z + α t T F ( e a γ | . | γ u ) ( z ) L 1 d z F ( e a γ | . | γ u ) ( t ) L 1 + t T F ( e a γ | . | γ u ) ( z ) L 1 3 2 F ( e a γ | . | γ Δ u ) ( z ) L 1 1 2 d z + β t T F ( e a γ | . | γ u ) ( z ) L 1 3 d z .
Hölde’s inequality gives
F ( e a γ | . | γ u ) ( T ) L 1 + μ 2 t T F ( e a γ | . | γ Δ u ) ( z ) L 1 d z + α t T F ( e a γ | . | γ u ) ( z ) L 1 d z F ( e a γ | . | γ u ) ( t ) L 1 + β + 1 2 μ t T F ( e a γ | . | γ u ) ( z ) L 1 3 d z F ( e a γ | . | γ u ) ( t ) L 1 + ( β + μ 1 ) t T F ( e a γ | . | γ u ) ( z ) L 1 3 d z .
Using the Gronwall Lemma, for 0 t T < T a , γ * we obtain
F ( e a γ | . | γ u ) ( T ) L 1 F ( e a γ | . | γ u ) ( t ) L 1 exp ( β + μ 1 ) t T F ( e a γ | . | γ u ) ( z ) L 1 2 d z .
This implies
F ( e a γ | . | γ u ) ( T ) L 1 2 exp 2 ( β + μ 1 ) t T F ( e a γ | . | γ u ) ( z ) L 1 2 d z F ( e a γ | . | γ u ) ( t ) L 1 2 .
Integrating from [ t 0 , T ] [ 0 , T a , γ * ) , we get
1 exp 2 ( β + μ 1 ) t 0 T F ( e a γ | . | γ u ) ( z ) L 1 2 d z 2 ( β + μ 1 ) ( T t 0 ) F ( e a γ | . | γ u ) ( t 0 ) L 1 2 .
Consequently, if T T a , γ * applying Equation (17), we conclude
1 2 ( β + μ 1 ) ( T a , γ * t 0 ) F ( e a γ | . | γ u ) ( t 0 ) L 1 2 , t 0 [ 0 , T a , γ * ) .
This completes the proof of Theorem 2 ( i i i ) .

4.4. Proof of Theorem 2 (iv)

Let 0 < a = a γ = a 1 + γ 2 < a . According to the injection property of the Sobolev spaces
H ˙ a , γ 1 ( R 3 ) H ˙ a , γ 1 ( R 3 )
we ensure that
u C ( [ 0 , T a , γ * ) , H ˙ a , γ 1 ( R 3 ) ) .
Further, if u C ( [ 0 , T a , γ * ) , H ˙ a , γ 1 ( R 3 ) ) and u C ( [ 0 , T a , γ * ) , H ˙ a , γ 1 ( R 3 ) ) . The fact that
u H ˙ a , γ 1 ( R 3 ) u H ˙ a , γ 1 ( R 3 )
implies that
T a , γ * = T a γ , γ * = T a 1 + γ 2 , γ * T a , γ * .
On the other hand, From Equation (20), we can write for all t [ 0 , T a , γ * )
1 2 ( β + μ 1 ) ( T a , γ * t ) F ( e a γ | . | γ u ) ( t ) L 1 2 .
Equation (4) implies
1 2 ( β + μ 1 ) ( T a , γ * t ) C γ 2 u ( t ) H ˙ a γ , γ 1 2 .
Taking the limit superior, as t T a , γ * , we conclude
lim sup t T a , γ * u ( t ) H ˙ a γ , γ 1 =
and
T a , γ * T a , γ * = T a γ , γ * = T a 1 + γ 2 , γ * .
As a consequence, from Equations (21) and (22), we obtain
T a , γ * = T a , γ * = T a γ , γ * = T a 1 + γ 2 , γ *
and similarly, we infer
T a γ , γ * = T a 1 + γ 2 , γ * = T a 1 + γ 2 1 + γ 2 , γ * = . . . = T a 1 + γ 2 n , γ * .
Now, for 0 < a < a , there exist n N * such that a 1 + γ 2 n < a < a , then
T a , γ * = T a , γ *
and for a > 0 , we have
1 2 ( β + μ 1 ) ( T a , γ * t ) F ( e a γ | . | γ u ) ( t ) L 1 2 .
As T a , γ * = T a , γ * , then
1 2 ( β + μ 1 ) ( T a , γ * t ) F ( e a γ | . | γ u ) ( t ) L 1 2 .
This implies
1 2 ( β + μ 1 ) ( T a , γ * t ) F ( e a 1 + γ 2 | . | γ u ) ( t ) L 1 2 .
Consequently, for a = a 1 + γ 2 n we can deduce
1 2 ( β + μ 1 ) ( T a , γ * t ) F ( e a 1 + γ 2 n | . | γ u ) ( t ) L 1 2 .
The Dominated Convergence Theorem implies, if n
1 2 ( β + μ 1 ) ( T a , γ * t ) u ^ ( t ) L 1 2
and T a , γ * = T 0 , γ * .
Therefore, by using Lemma 1, for k N such that 1 + k 2 γ 2 , Equation (23) becomes
1 2 ( β + μ 1 ) ( T a , γ * t ) 1 / 2 u ^ ( t ) L 1 B ( 2 ) u ( t ) L 2 1 3 2 ( 1 + k 2 γ ) u ( t ) H ˙ 1 + k 2 γ 3 2 ( 1 + k 2 γ ) , t [ 0 , T a , γ * ) .
The energy estimate Equation (2) yields
1 2 ( β + μ 1 ) ( T a , γ * t ) 1 / 2 B ( 2 ) u 0 L 2 1 3 2 ( 1 + k 2 γ ) u ( t ) H ˙ 1 + k 2 γ 3 2 ( 1 + k 2 γ )
or equivalently
1 2 ( β + μ 1 ) ( T a , γ * t ) 1 / 2 2 ( 1 + k 2 γ ) 3 B ( 2 ) 2 ( 1 + k 2 γ ) 3 u 0 L 2 1 2 ( 1 + k 2 γ ) 3 u ( t ) H ˙ 1 + k 2 γ .
Then,
C 1 ( T a , γ * t ) 2 3 C 2 ( T a , γ * t ) γ 3 k u ( t ) H ˙ 1 + k 2 γ 2
with
C 1 = u 0 L 2 2 ( β + μ 1 ) B ( 2 ) 2 / 3 , C 2 = 1 2 ( β + μ 1 ) B ( 2 ) 2 u 0 L 2 2 γ 3 .
This implies
1 k ! C 1 ( T a , γ * t ) 2 3 2 a C 2 ( T a , γ * t ) γ 3 k ξ ( 2 a ) k k ! | ξ | k γ | ξ | 2 | u ^ ( t , ξ ) | 2 d ξ .
Summing the above inequality over the set { k N , k 2 γ } , one gets
C 1 ( T a , γ * t ) 2 3 e 2 a C 2 ( T a , γ * t ) γ 3 0 k 2 γ 2 a C 2 ( T a , γ * t ) γ 3 k k ! ξ e 2 a | ξ | γ 0 k 2 γ ( 2 a | ξ | γ ) k k ! | ξ | 2 | u ^ ( t , ξ ) | 2 d ξ ξ e 2 a | ξ | γ | ξ | 2 | u ^ ( t , ξ ) | 2 d ξ .
Finally, if we put the function
E ( x ) = e x k = 0 2 γ 0 x k k ! ( x 2 γ 0 + 1 e x 2 ) , x ( 0 , )
where 2 γ 0 is the integer part of 2 γ .
Further, for all x ( 0 , ) the function E is continuous, and E > 0 . Besides, E is bounded below as x , i.e., lim x E ( x ) = also bounded below as x 0 + , i.e., lim x 0 + E ( x ) = 1 ( 2 γ + 1 ) ! . Consequently, there is a positive constant C γ 0 > 0 such that E ( x ) C γ 0 for all x > 0 . As a result, we can write
u ( t ) H a , γ 1 C 1 C γ 0 ( T a , γ * t ) 2 3 2 a C 2 ( T a , γ * t ) γ 3 2 γ 0 + 1 exp a C 2 ( T a , γ * t ) γ 3
or equivalently
u ( t ) H a , γ 1 C 3 ( T a , γ * t ) 2 ( γ 0 + γ ) + γ γ 0 3 γ 0 exp a C 2 ( T a , γ * t ) γ 3
with C 3 = C 1 C γ 0 ( 2 a C 2 ) 2 γ 0 + 1 . This concludes the proof of the inequality ( i v ) and the proof of Theorem 2 is completes.
Remark 2.
The blow-up Equations (20)–(23) provide a quantitative description of the growth rate of the velocity field near the singularity. This can be viewed as a practical example illustrating how the energy of the flow increases in finite time within the Sobolev–Gevrey framework.

5. Conclusions

The main contributions of this paper can be summarized as follows:
  • We established local existence and uniqueness of solutions for the modified three-dimensional convective Brinkman–Forchheimer system in Sobolev–Gevrey spaces.
  • We derived several symmetry-preserving blow-up criteria, showing that the singularity thresholds depend mainly on the Gevrey regularity rather than on any loss of isotropic symmetry.
  • These results generalize and refine previous studies on the Navier–Stokes and classical Brinkman–Forchheimer equations, providing a more precise description of the exponential-type blow-up in Sobolev–Gevrey frameworks.
  • The analysis clarifies the role of analytic regularity in controlling nonlinear instabilities and symmetry behavior in viscous porous-media flows.
  • Future work will focus on the decay and stability of global solutions under similar symmetry constraints.
These findings contribute to a deeper theoretical understanding of blow-up mechanisms in nonlinear fluid models governed by Gevrey regularity.

Author Contributions

Conceptualization, L.J.; Methodology, L.J.; Formal analysis, L.J.; Investigation, L.J.; Writing—original draft preparation, L.J.; Writing—review and editing, L.J. and I.A. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-DDRSP2503).

Data Availability Statement

The original contributions presented in this study are included in the article. Further inquiries can be directed to the corresponding author.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Hajduk, K.W.; Robinson, J.C. Energy equality for the 3D critical convective Brinkman-Forchheimer equations. J. Differ. Equ. 2017, 263, 7141–7161. [Google Scholar] [CrossRef]
  2. Markowich, P.A.; Titi, E.S.; Trabelsi, S. Continuous data assimilation for the three-dimensional Brinkman-Forchheimer-extended Darcay model. Nonlinearity 2016, 29, 1292–1328. [Google Scholar] [CrossRef]
  3. Ladyzhenskaya, O.A. The Mathematical Theory of Viscous Incompressible Flow; Gordon and Breach: New York, NY, USA, 1969. [Google Scholar]
  4. Temam, R. Navier-Stokes Equations, Theory and Numerical Analysis; North-Holland: Amsterdam, The Netherlands, 1984. [Google Scholar]
  5. Benameur, J. Global weak solution of 3D-NSE with exponential damping. Open Math. 2022, 20, 590–607. [Google Scholar] [CrossRef]
  6. Cai, Z.; Jiu, Q. Weak and Strong solutions for the incompressible Navier-Stokes euations with daping. J. Math. Anal. Appl. 2008, 343, 799–809. [Google Scholar] [CrossRef]
  7. Jlali, L.; Benameur, J. Long time decay of incompressible convective Brinkman-Forchheimer equation in L2( R 3 ). Demonstr. Math. 2024, 57, 20240013. [Google Scholar] [CrossRef]
  8. Jlali, L. On the exponential type explosion for solution of 3D modified critical homogeneous convective Brinkman-Forchheimer equation. Discret. Contin. Dyn.-Syst. S, 2025; early access. [Google Scholar] [CrossRef]
  9. Selmi, R.; Benameur, J. Study of the Blow Up of the Maximal Solution to the Three-Dimensional Magnetohydrodynamic System in Lei-Lin-Gevrey Spaces. Int. J. Anal. Appl. 2020, 18, 421–438. [Google Scholar]
  10. Melo, W.G.; Rocha, N.F.; Zingano, R. Local existence, uniqueness and lower bounds of solutions for the magnetohydrodynamics equations in Sobolev-Gevrey spaces. J. Math. Anal. Appl. 2020, 482, 123524. [Google Scholar] [CrossRef]
  11. Foias, C.; Temam, R. Gevrey class regularity for the solutions of the Navier-Stokes equations. J. Funct. Anal. 1989, 87, 359–369. [Google Scholar] [CrossRef]
  12. Beale, J.; Kato, T.; Majda, A. Remarks on the breakdown of smooth solutions for the 3D Euler equation. Comm. Math. Phys. 1984, 94, 61–66. [Google Scholar] [CrossRef]
  13. Benameur, J. On the exponential type explosion of Navier-Stokes equations. Nonlinear Anal. Theory Methods Appl. 2014, 103, 87–97. [Google Scholar] [CrossRef]
  14. Benameur, J.; Jlali, L. On the blow-up criterion of 3D- NSE in Sobolev-Gevrey spaces. J. Math. Fluid Mech. 2016, 18, 805–822. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Jlali, L.; Alazman, I. Symmetry and Blow-Up for 3D Modified CBF Equations in Sobolev–Gevrey Spaces. Symmetry 2025, 17, 1877. https://doi.org/10.3390/sym17111877

AMA Style

Jlali L, Alazman I. Symmetry and Blow-Up for 3D Modified CBF Equations in Sobolev–Gevrey Spaces. Symmetry. 2025; 17(11):1877. https://doi.org/10.3390/sym17111877

Chicago/Turabian Style

Jlali, Lotfi, and Ibtehal Alazman. 2025. "Symmetry and Blow-Up for 3D Modified CBF Equations in Sobolev–Gevrey Spaces" Symmetry 17, no. 11: 1877. https://doi.org/10.3390/sym17111877

APA Style

Jlali, L., & Alazman, I. (2025). Symmetry and Blow-Up for 3D Modified CBF Equations in Sobolev–Gevrey Spaces. Symmetry, 17(11), 1877. https://doi.org/10.3390/sym17111877

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop