On Hilfer–Hadamard Tripled System with Symmetric Nonlocal Riemann–Liouville Integral Boundary Conditions
Abstract
1. Introduction
2. Auxiliary Results
3. Existence and Uniqueness Results
4. Stability Analysis
5. Applications
- 1.
- 2.
- Since the value of Θ remains positive for different values of the fractional order , the problem (83) is Ulam–Hyers stable.
- 3.
- For nonzero ϵ, the problem (83) satisfies generalized Ulam–Hyers stability since the positivity of Θ implies the positivity of function .Therefore, the problem (83) has a unique solution.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tarasov, V.E.; Tarasova, S.S. Fractional derivatives and integrals: What are they needed for? Mathematics 2020, 8, 164. [Google Scholar] [CrossRef]
- Valério, D.; Ortigueira, M.D.; Lopes, A.M. How many fractional derivatives are there? Mathematics 2022, 10, 737. [Google Scholar] [CrossRef]
- Hilfer, R. Experimental evidence for fractional time evolution in glass forming materials. Chem. Phys. 2002, 284, 399–408. [Google Scholar] [CrossRef]
- Hilfer, R.; Luchko, Y.; Tomovski, Z. Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives. Fract. Calc. Appl. Anal. 2009, 12, 299–318. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Ibrahim Nuruddeen, R.; Gómez-Aguilar, J.F.; Garba Ahmad, A.; Ali, K.K. Investigating the dynamics of Hilfer fractional operator associated with certain electric circuit models. Int. J. Circuit Theory Appl. 2022, 50, 2320–2341. [Google Scholar] [CrossRef]
- Vivek, S.; Panda, S.K.; Vijayakumar, V. Optimal feedback control results for Hilfer fractional neutral dynamical systems with history-dependent operators. J. Optim. Theory Appl. 2025, 204, 20. [Google Scholar] [CrossRef]
- Qassim, M.D.; Furati, K.M.; Tatar, N.E. On a differential equation involving Hilfer-Hadamard fractional derivative. In Abstract and Applied Analysis; Hindawi Publishing Corporation: London, UK, 2012; Volume 2012, p. 391062. [Google Scholar]
- Abbas, S.; Benchohra, M.; Lagreg, J.E.; Alsaedi, A.; Zhou, Y. Existence and Ulam stability for fractional differential equations of Hilfer–Hadamard type. Adv. Differ. Equ. 2017, 2017, 180. [Google Scholar] [CrossRef]
- Manigandan, M.; Meganathan, R.; Shanthi, R.S.; Rhaima, M. Existence and analysis of Hilfer-Hadamard fractional differential equations in RLC circuit models. AIMS Math. 2024, 9, 28741–28764. [Google Scholar] [CrossRef]
- Ahmad, B.; Saeed, H.A.; Ntouyas, S.K. A Study of a Nonlocal Coupled Integral Boundary Value Problem for Nonlinear Hilfer–Hadamard-Type Fractional Langevin Equations. Fractal Fract. 2025, 9, 229. [Google Scholar] [CrossRef]
- Tudorache, A.; Luca, R. Systems of Hilfer–Hadamard Fractional Differential Equations with Nonlocal Coupled Boundary Conditions. Fractal Fract. 2023, 7, 816. [Google Scholar] [CrossRef]
- Verma, P.; Tiwari, S. Analysis of multi-term time complex fractional diffusion equation with Hilfer-Hadamard fractional derivative. Math. Sci. 2024, 18, 693–705. [Google Scholar] [CrossRef]
- Aderyani, S.R.; Saadati, R.; Li, C. Exploring stability in the Hilfer-Hadamard fractional order systems: Insights from numerical analysis and simulations. J. Appl. Math. Comput. 2025, 71, 6937–6958. [Google Scholar] [CrossRef]
- Tshering, U.S.; Thailert, E.; Ntouyas, S.K. Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Math. 2024, 9, 25849–25878. [Google Scholar] [CrossRef]
- Gavric, D.; Harris, L.; Stojmenovska, I. A novel SIR-based model for containing misinformation on social media. Filomat 2025, 39, 3657–3668. [Google Scholar] [CrossRef]
- Sun, G.; Mai, A.; Jin, Z. Modeling precaution, immunity loss and dispersal on disease dynamics: A two-patch SIRS model. Adv. Contin. Discret. Model. 2025, 2025, 3. [Google Scholar] [CrossRef]
- Nisar, K.S.; Farman, M.; Abdel-Aty, M.; Cao, J. A review on epidemic models in sight of fractional calculus. Alex. Eng. J. 2023, 75, 81–113. [Google Scholar] [CrossRef]
- Algolam, M.S.; Almalahi, M.; Aldwoah, K.; Awaad, A.S.; Suhail, M.; Alshammari, F.A.; Younis, B. Theoretical and Numerical Analysis of the SIR Model and Its Symmetric Cases with Power Caputo Fractional Derivative. Fractal Fract. 2025, 9, 251. [Google Scholar] [CrossRef]
- Taghvaei, A.; Georgiou, T.T.; Norton, L.; Tannenbaum, A. Fractional SIR epidemiological models. Sci. Rep. 2020, 10, 20882. [Google Scholar] [CrossRef]
- Berinde, V.; Borcut, M. Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces. Nonlinear Anal. Theory, Methods Appl. 2011, 74, 4889–4897. [Google Scholar] [CrossRef]
- Karakaya, V.; Bouzara, N.E.H.; Doğan, K.; Atalan, Y. Existence of tripled fixed points for a class of condensing operators in Banach spaces. Sci. World J. 2014, 2014, 541862. [Google Scholar] [CrossRef]
- Ibnelazyz, L. Tripled system of fractional Langevin equations with tripled multipoint boundary conditions. Filomat 2024, 38, 11401–11432. [Google Scholar] [CrossRef]
- Matar, M.M.; Amra, I.A.; Alzabut, J. Existence of solutions for tripled system of fractional differential equations involving cyclic permutation boundary conditions. Bound. Value Probl. 2020, 2020, 140. [Google Scholar] [CrossRef]
- Jamil, M.; Khan, R.A.; Shah, K.; Abdalla, B.; Abdeljawad, T. Application of a tripled fixed point theorem to investigate a nonlinear system of fractional order hybrid sequential integro-differential equations. AIMS Math. 2022, 7, 18708–18728. [Google Scholar] [CrossRef]
- Kumar, M.S.; Deepa, M.; Kavitha, J.; Sadhasivam, V. Existence theory of fractional order three-dimensional differential system at resonance. Math. Model. Control 2023, 3, 127–138. [Google Scholar] [CrossRef]
- Ahmad, B.; Hamdan, S.; Alsaedi, A.; Ntouyas, S.K. A study of a nonlinear coupled system of three fractional differential equations with nonlocal coupled boundary conditions. Adv. Differ. Equ. 2021, 2021, 278. [Google Scholar] [CrossRef]
- Murugesan, M.; Muthaiah, S.; Alzabut, J.; Nandha Gopal, T. Existence and HU stability of a tripled system of sequential fractional differential equations with multipoint boundary conditions. Bound. Value Probl. 2023, 2023, 56. [Google Scholar] [CrossRef]
- Madani, Y.A.; Rabih, M.N.A.; Alqarni, F.A.; Ali, Z.; Aldwoah, K.A.; Hleili, M. Existence, uniqueness, and stability of a nonlinear tripled fractional order differential system. Fractal Fract. 2024, 8, 416. [Google Scholar] [CrossRef]
- Nieto, J.J.; Yadav, A.; Mathur, T.; Agarwal, S. Fixed Point Method for Nonlinear Fractional Differential Equations with Integral Boundary Conditions on Tetramethyl-Butane Graph. Symmetry 2024, 16, 756. [Google Scholar] [CrossRef]
- Sánchez-Vizuet, T. A symmetric boundary integral formulation for time-domain acoustic-elastic scattering. arXiv 2025, arXiv:2502.04767. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K. Hilfer–Hadamard fractional boundary value problems with nonlocal mixed boundary conditions. Fractal Fract. 2021, 5, 195. [Google Scholar] [CrossRef]
- Awadalla, M.; Murugesan, M.; Muthaiah, S.; Unyong, B.; Egami, R.H. Existence results for a system of sequential differential equations with varying fractional orders via Hilfer-Hadamard sense. AIMS Math. 2024, 9, 9926–9950. [Google Scholar] [CrossRef]
- Kilbas, A.A. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Jarad, F.; Abdeljawad, T.; Baleanu, D. Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012, 2012, 142. [Google Scholar] [CrossRef]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach Science: Yverdon, Switzerland, 1993. [Google Scholar]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2003; Volume 14, pp. 15–16. [Google Scholar]
- Rus, I.A. Ulam stabilities of ordinary differential equations in a Banach space. Carpathian J. Math. 2010, 26, 103–107. [Google Scholar]
- Agarwal, R.P.; Hristova, S.; O’Regan, D. Ulam Stability for Boundary Value Problems of Differential Equations—Main Misunderstandings and How to Avoid Them. Mathematics 2024, 12, 1626. [Google Scholar] [CrossRef]
- Abdo, M.S.; Thabet, S.T.; Ahmad, B. The existence and Ulam–Hyers stability results for Ψ-Hilfer fractional integrodifferential equations. J. Pseudo-Differ. Oper. Appl. 2020, 11, 1757–1780. [Google Scholar] [CrossRef]
- Kostić, M.; Koyuncuoğlu, H.C.; Jonnalagadda, J.M. Ulam–Hyers Stability of Fractional Difference Equations with Hilfer Derivatives. Fractal Fract. 2025, 9, 417. [Google Scholar] [CrossRef]
| 3.2524088700 | 3.0985360774 | 2.8845508961 | |
| 0.0091949174 | 0.0081914168 | 0.0092299795 | |
| 0.0828257723 | 0.1208554345 | 0.1163279406 | |
| 13.9112322005 | 13.9538292053 | 13.4585604732 | |
| 3.2528362165 | 2.7267134656 | 3.2537913988 | |
| 0.3071287307 | 0.4481476618 | 0.4313591259 | |
| 1.1805965109 | 1.1842115663 | 1.1421798808 | |
| 0.3364353800 | 0.2997180174 | 0.3377182748 | |
| 1.6881838446 | 2.4633177139 | 2.3710367504 | |
| 0.7061565695 | 0.7138407966 | 0.6847623796 | |
| 0.2938434305 | 0.2861592034 | 0.3152376204 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aljoudi, S.; Alamri, H.; Alotaibi, A. On Hilfer–Hadamard Tripled System with Symmetric Nonlocal Riemann–Liouville Integral Boundary Conditions. Symmetry 2025, 17, 1867. https://doi.org/10.3390/sym17111867
Aljoudi S, Alamri H, Alotaibi A. On Hilfer–Hadamard Tripled System with Symmetric Nonlocal Riemann–Liouville Integral Boundary Conditions. Symmetry. 2025; 17(11):1867. https://doi.org/10.3390/sym17111867
Chicago/Turabian StyleAljoudi, Shorog, Hind Alamri, and Alanoud Alotaibi. 2025. "On Hilfer–Hadamard Tripled System with Symmetric Nonlocal Riemann–Liouville Integral Boundary Conditions" Symmetry 17, no. 11: 1867. https://doi.org/10.3390/sym17111867
APA StyleAljoudi, S., Alamri, H., & Alotaibi, A. (2025). On Hilfer–Hadamard Tripled System with Symmetric Nonlocal Riemann–Liouville Integral Boundary Conditions. Symmetry, 17(11), 1867. https://doi.org/10.3390/sym17111867

