Stability Analysis of Bidirectional Associative Memory Neural Networks with Time-Varying Delays via Second-Order Reciprocally Convex Approach
Abstract
1. Introduction
2. Problem Overview and Basic Notions
- 1.
- .
- 2.
- There exists an appropriate dimensional matrix Π such that
3. Main Results
4. Numerical Examples
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, B.; Yang, H.; Yao, Q.; Yu, A.; Hong, T.; Zhang, J.; Kadoch, M.; Cheriet, M. Hopfield Neural Network-based Fault Location in Wireless and Optical Networks for Smart City IoT. In Proceedings of the 15th International Wireless Communications & Mobile Computing Conference, Tangier, Morocco, 24–28 June 2019. [Google Scholar]
- Balasubramaniam, P.; Vembarasan, V.; Rakkiyappan, R. Delay-dependent robust exponential state estimation of Markovian jumping fuzzy Hopfield neural networks with mixed random time-varying delays. Commun. Nonlinear Sci. 2011, 16, 2109–2129. [Google Scholar] [CrossRef]
- Nguang, S.K.; Assawinchaichote, W.; Shi, P.; Shi, Y. Robust H∞ control design for uncertain fuzzy systems with Markovian jumps: An LMI approach. In Proceedings of the American Control Conference, Oregon, Portland, 8–10 June 2005. [Google Scholar]
- Zhu, Q.; Cao, J. Stability Analysis of Markovian Jump Stochastic BAM Neural Networks With Impulse Control and Mixed Time Delays. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 467–479. [Google Scholar] [PubMed]
- Cong, E.Y.; Han, X.; Zhang, X. Global exponential stability analysis of dicrete-time BAM NNs with delays. Neurocomputing 2020, 379, 227–235. [Google Scholar] [CrossRef]
- Madiyalagan, K.; Sakthivel, R.; Marshal Anthony, S. New robust passivity criteria for stochastic fuzzy BAM neural network with time-varying delays. Commun. Nonlinear Sci. 2012, 17, 1392–1407. [Google Scholar] [CrossRef]
- Kosko, B. Bidirectional associative memories. IEEE Trans. Syst. Man Cybern. Syst. 1988, 18, 49–60. [Google Scholar] [CrossRef]
- Kosko, B. Adaptive bidirectional associative memories. Appl. Opt. 1987, 26, 4947–4960. [Google Scholar] [CrossRef]
- Ritter, G.X.; Urcid, G.; Lancu, L. Reconstruction of Patterns from Noisy Inputs Using Morphological Associative Memories. J. Math. Imaging Vis. 2003, 19, 95–111. [Google Scholar] [CrossRef]
- Lan, J.; Wang, X.; Zhang, X. Global Robust Exponential Synchronization of Interval BAM Neural Networks with Multiple Time-Varying Delays. Circuits Syst. Signal Process. 2024, 43, 2147–2170. [Google Scholar] [CrossRef]
- Sakthivel, R.; Samidurai, R.; Marshal Anthony, S. Global asymptotic stability of BAM neural networks with mixed delays and impulses. Appl. Math. Comput. 2009, 212, 113–119. [Google Scholar] [CrossRef]
- Ali, M.S.; Balasubramaniam, P. Global exponential stability of uncertain fuzzy BAM neural networks with time-varying delays. Chaos Solitons Fractals 2009, 42, 2191–2199. [Google Scholar]
- Zhang, X.M.; Han, Q.L.; Seuret, A.; Gouaisbaut, F.; He, Y. Overview of recent advances in stability of linear systems with time-varying delays. IET Control Theory Appl. 2019, 13, 1–16. [Google Scholar] [CrossRef]
- Li, Z.; Bai, Y.; Huang, C.; Mu, S. Improved Stability Analysis for Delayed Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 4535–4541. [Google Scholar] [CrossRef]
- Zhang, C.K.; Jiang, L.; Wu, Q.H.; He, Y.; Wu, M. Delay-dependent robust load frequency control for time delay power systems. IEEE Trans. Power Syst. 2013, 28, 2192–2201. [Google Scholar] [CrossRef]
- Seuret, A.; Gouaisbaut, F. Wirtinger-based integral inequality: Application to time-delay systems. Automatica 2013, 49, 2860–2866. [Google Scholar] [CrossRef]
- Al-Wais, S.; Mohajerpoor, R.; Shanmugam, L.; Abdi, H.; Nahavandi, S. Improved delay-dependent stability criteria for telerobotic systems with time-varying delays. IEEE Trans. Syst. Man Cybern. Syst. 2018, 48, 2470–2484. [Google Scholar] [CrossRef]
- Richard, J. Time-delay systems: An overview of some recent advances and open problems. Automatica 2003, 39, 1667–1694. [Google Scholar] [CrossRef]
- Marcus, C.M.; Westervelt, R.M. Stability of analog neural networks with delay. Phys. Rev. A 1989, 39, 347–359. [Google Scholar] [CrossRef]
- Zeng, H.B.; Zu, Z.J.; Wang, W.; Zhang, X.M. Relaxed stability criteria of delayed neural networks using delay-parameters-dependent slack matrices. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 1486–1501. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, Z.; Liu, D. A comprehensive review of stability analysis of continuous-time recurrent neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 1229–1261. [Google Scholar] [CrossRef]
- Li, Y.; Gu, K.; Zhou, J.; Xu, S. Estimating stable delay intervals with a discretized Lyapunov–Krasovskii functional formulation. Automatica 2014, 50, 1691–1697. [Google Scholar] [CrossRef]
- Chen, J.; Park, J.H.; Xu, S. Stability analysis of continuous time systems with time-varying delay using new Lyapunov–Krasovskii functionals. J. Frankl. Inst. 2018, 355, 5957–5967. [Google Scholar] [CrossRef]
- Lee, D.H.; Kim, Y.J.; Lee, S.H.; Kwon, O.M. Enhancing Stability Criteria for Linear Systems with Interval Time-Varying Delays via an Augmented Lyapunov–Krasovskii Functional. Mathematics 2024, 12, 2241. [Google Scholar] [CrossRef]
- Boyd, S.; Ghaoui, L.E.; Feron, E.; Balakrishnan, V. Linear Matrix Inequalities in Systems and Control Theory, 1st ed.; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1994; pp. 7–35. [Google Scholar]
- Zhai, G.; Koyama, N.; Bruzelius, F.; Yoshida, M. Strict LMI conditions for stability and stabilization of discrete-time descriptor systems. In Proceedings of the International Symposium on Intelligent Control Conference, Taipei, Taiwan, 2–4 September 2004. [Google Scholar]
- Briat, C. Convergence and equivalence results for the Jensen’s inequality—Application to time-delay and sampled-data systems. IEEE Trans. Automat. Control 2011, 56, 1660–1665. [Google Scholar] [CrossRef]
- Azizi, T.; Kerr, G. Application of Stability Theory in Study of Local Dynamics of Nonlinear Systems. J. Appl. Phys. 2020, 8, 1180–1192. [Google Scholar] [CrossRef]
- Chen, J.; Park, J.H.; Xu, S. Stability analysis for neural networks with time-varying delay via improved techniques. IEEE Trans. Cybern. 2019, 49, 4495–4500. [Google Scholar] [CrossRef]
- Chen, J.; Park, J.H. New versions of Bessel–Legendre inequality and their applications to systems with time-varying delay. Appl. Math. Comput. 2020, 375, 125060. [Google Scholar] [CrossRef]
- Lee, W.; Lee, S.Y.; Park, P. Affine Bessel–Legendre inequality: Application to stability analysis for systems with time-varying delays. Automatica 2018, 93, 535–539. [Google Scholar] [CrossRef]
- Chen, Y.; Zeng, H.B.; Li, Y. Stability analysis of linear delayed systems based on an allowable delay set partitioning approach. Automatica 2024, 163, 111603. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, Z. A new multiple integral inequality and its application to stability analysis of time-delay systems. Appl. Math. Lett. 2020, 105, 106325. [Google Scholar] [CrossRef]
- Chen, J.; Xu, S.; Zhang, B.; Liu, G. A note on relationship between two classes of integral inequalities. IEEE Trans. Autom. Control 2017, 62, 4044–4049. [Google Scholar] [CrossRef]
- Zhang, C.K.; He, Y.; Jiang, Y.; Wu, M.; Zeng, H.B. Stability analysis of systems with time-varying delay via relaxed integral inequalities. Syst. Control Lett. 2016, 92, 52–61. [Google Scholar] [CrossRef]
- Chandra, S.R.; Padmanabhan, S.; Umesha, V.; Ali, M.S.; Rajchakit, G.; Jirawattanpanit, A. New Insights on Bidirectional Associative Memory Neural Networks with Leakage Delay Components and Time-Varying Delays Using Samled-Data Control. Neural Process. Lett. 2024, 56, 94. [Google Scholar] [CrossRef]
- Zhang, C.K.; He, Y.; Jiang, L.; Wu, M. An extended reciprocally convex matrix inequality for stability analysis of systems with time-varying delay. Automatica 2017, 85, 481–485. [Google Scholar] [CrossRef]
- Arunagirinathan, S.; Lee, T.H. Generalized delay-dependent reciprocally convex inequality on stability for neural networks with time-varying delay. Math. Comput. Simulat. 2024, 217, 109–120. [Google Scholar] [CrossRef]
- Chandrasekar, A.; Radhika, T.; Zhu, Q. State Estimation for Genetic Regulatory Networks with Two Delay Components by Using Second-Order Reciprocally Convex Approach. Neural Process. Lett. 2021, 54, 327–345. [Google Scholar] [CrossRef]
- Lee, W.; Park, W. Second-order reciprocally convex approach to stability of systems with interval time-varying delays. Appl. Math. Comput. 2014, 229, 245–253. [Google Scholar] [CrossRef]
- Liu, K.; Fridman, E.; Johansson, K.H.; Xia, Y. Generalized Jensen inequalities with application to stability analysis of systems with distributed delays over infinite time-horizons. Automatica 2016, 69, 222–231. [Google Scholar] [CrossRef]
- Park, P.; Ko, J.W.; Jeong, C. Reciprocally convex approach to stability of systems with time-varying delays. Automatica 2011, 47, 235–238. [Google Scholar] [CrossRef]
| Values of | ||||||
|---|---|---|---|---|---|---|
| Theorem 1 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | |
| values of | 0.0 | 145.1342 | 145.3240 | 145.4740 | 145.4943 | 145.5407 |
| 0.5 | 146.2320 | 146.4451 | 146.5670 | 146.6116 | 146.6683 | |
| 1.0 | 147.1399 | 147.3313 | 147.4210 | 147.5522 | 147.5958 | |
| 1.5 | 148.2490 | 148.4354 | 148.5136 | 148.5840 | 148.6148 | |
| 2.0 | 149.1221 | 149.2633 | 149.4471 | 149.5325 | 149.6182 | |
| Values of | ||||||
|---|---|---|---|---|---|---|
| Theorem 2 | 0.25 | 0.5 | 0.75 | 0.9 | 0.99 | |
| values of | 0.0 | 120.1468 | 120.2357 | 120.4543 | 120.5462 | 120.6128 |
| 0.5 | 121.2548 | 121.3829 | 121.4517 | 121.5015 | 121.6882 | |
| 1.0 | 122.2789 | 122.3982 | 122.4028 | 122.5234 | 122.6789 | |
| 1.5 | 123.2167 | 123.3454 | 123.4675 | 123.5678 | 123.6248 | |
| 2.0 | 124.3925 | 124.5689 | 124.6895 | 124.7052 | 124.8962 | |
| Comparison of Theorems | Theorem 1 | Theorem 2 |
|---|---|---|
| MAUB obtained | nearly 150 | nearly 125 |
| Value of | ||
| Symmetric Matrices | 50 | 54 |
| Any Matrices | 10 | Nil |
| Unknown Constants | 228 | 4 |
| No. of Decision Variables | ||
| when n = 2 | 418 | 166 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chandran, K.; Kuppusamy, R.; Vaitheeswaran, V. Stability Analysis of Bidirectional Associative Memory Neural Networks with Time-Varying Delays via Second-Order Reciprocally Convex Approach. Symmetry 2025, 17, 1852. https://doi.org/10.3390/sym17111852
Chandran K, Kuppusamy R, Vaitheeswaran V. Stability Analysis of Bidirectional Associative Memory Neural Networks with Time-Varying Delays via Second-Order Reciprocally Convex Approach. Symmetry. 2025; 17(11):1852. https://doi.org/10.3390/sym17111852
Chicago/Turabian StyleChandran, Kalaivani, Renuga Kuppusamy, and Vembarasan Vaitheeswaran. 2025. "Stability Analysis of Bidirectional Associative Memory Neural Networks with Time-Varying Delays via Second-Order Reciprocally Convex Approach" Symmetry 17, no. 11: 1852. https://doi.org/10.3390/sym17111852
APA StyleChandran, K., Kuppusamy, R., & Vaitheeswaran, V. (2025). Stability Analysis of Bidirectional Associative Memory Neural Networks with Time-Varying Delays via Second-Order Reciprocally Convex Approach. Symmetry, 17(11), 1852. https://doi.org/10.3390/sym17111852

