Remarks on Multivalued Variants of Ekeland Principle with Applications
Abstract
1. Introduction
2. Materials and Methods: Theoretical Background and Conceptual Framework
2.1. Basic Aspects for the First Considered Multivalued Variant of Ekeland Principle
2.1.1. Preliminaries of Affine Geometry
2.1.2. Other Basic Elements
- If E is preordered, then the setis a convex cone with vertex.C : = {x ∈ E: x ≥ 0}
- Let C be a convex cone with vertex in E. The binary relationis a preordered relation in E compatible with the structure of vector space, andis an order relation iff C is pointed.
2.1.3. Luc Functional
2.1.4. Classical Variants of Ekeland Principle and Caristi–Kirk Theorem
2.2. Theoretical Elements for the Second Type of Analyzed Multivalued Variants of Ekeland Principle
ξ(a) ≥ ξ(a0) ∀a ∈ A.
- is convex when A is convex and is positive homogeneous when A is a cone with vertex;
- (y) > 0 ⇔ y ∉ A (from definition, A is closed);
- ∂(a) = N(a; A) ∩ \{0} when a ∈ Fr A and int A ≠ ∅ ( = {ξ ∈ Y¬*: ||ξ|| ≤ 1}).
- We have the following:(consider the cases , ∈ − C (use then Proposition 2.1), , ∉ − C, ∈ − C, and ∉ − C).
2.3. Theoretical Elements for Menger PM-Space
2.3.1. Other Preliminaries
2.3.2. Menger PM-Space
3. Presentation of the Results Subjected to Analysis
3.1. First Variant
3.2. Second Type of Multivalued Variants of Ekeland Principle ([27])
- The assertion 3) may be expressed using the coderivative ((2.42)), = {ξ ∈ X*: ||ξ|| ≤ 1}):
- ∃ ηε in (C+ ∩ )\{0} such that D* f (xε, yε)(ηε) ∩ ε≠ ∅.
3.3. Ekeland Principle and Caristi-Kirk Theorem in Probabilistic Metric Space
3.3.1. Caristi-Kirk Theorem in Probabilistic Metric Spaces
3.3.2. Ekeland Principle in Probabilistic Metric Spaces

4. Discussion
4.1. Applications of Multivalued Versions of Ekeland Principle in Variational Methods Results
4.2. On Several Applications of Various Multivalued Versions of Ekeland Principle
4.3. Formulations of Some Real-World Problems
4.4. The Importance of Set-Valued Versions of Ekeland Principle as Reflected in Numerical Applications
4.5. Final Comments
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Ekeland, I. Sur les problèmes variationnels. In Cahiers de Mathématique de la Decision; Université Paris-Dauphine: Paris, France, 1972; No 7217. [Google Scholar]
- Cobzaş, Ş. Ekeland, Takahashi and Caristi principles in preordered quasi-metric spaces. arXiv 2022, arXiv:2112.12860v2. [Google Scholar] [CrossRef]
- Bosch, C.; Garcia, A.; Gómez-Wulschner, C.; Hernández-Linares, S. Equivalents to Ekeland’s Variational Principle in Locally Complete Spaces. Sci. Math. Jpn. 2010, 72, 283–287. [Google Scholar]
- Lazaiz, S.; Aamri, M.; Zakary, O. Caristi’s Fixed Point Theorem and Ekeland’s Variational Principle for Set Valued Mapping using the LZ-functions. Int. J. Comput. Appl. 2017, 158, 0975–8887. [Google Scholar] [CrossRef]
- Ali, B.; Cobzaş, Ş.; Mabula, M.D. Ekeland Variational Principle and Some of Its Equivalents on a Weighted Graph, Completeness and the OSC Property. Axioms 2023, 12, 247. [Google Scholar] [CrossRef]
- Bao, T.Q.; Mordukhovich, B.S. Variational Principles for Set-Valued Mappings with Applications to Multiobjective Optimization. Control Cybern. 2007, 36, 531–562. [Google Scholar]
- Ansari, Q.H.; Eshghinezhad, S.; Fakhar, M. Ekeland’s variational principle for set-valued maps with applications to vector optimization in uniform spaces. Taiwan J. Math. 2014, 18, 1999–2020. [Google Scholar] [CrossRef]
- Liu, C.G.; Ng, K.F. Ekeland’s variational principle for set-valued functions. SIAM J. Optim. 2011, 21, 41–56. [Google Scholar] [CrossRef]
- Dutta, R.; Nayak, P.K.; De, S.K. On Ekeland Variational Principle and Its Applications Through Fuzzy Quasi Metric Spaces with Non-Archimedean t-norm. Qeios 2024, 6, VJGGST.2. [Google Scholar]
- Ansari, Q.H.; Sharma, P.K. Ekeland type variational principle for set-valued maps in quasi-metric spaces with applications. J. Nonlinear Convex Anal. 2019, 20, 1683–1700. [Google Scholar]
- Falcó, J.; Isert, D. Group invariant variational principles. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 2024, 118, 91. [Google Scholar] [CrossRef]
- Qiu, J.H. A revised pre-order principle and set-valued Ekeland variational principles with generalized distances. Acta Math. Sin. Engl. Ser. 2017, 33, 775–792. [Google Scholar] [CrossRef]
- Kabaivanov, S.; Zlatanov, B. A variational principle, coupled fixed points and market equilibrium. Nonlinear Anal. Model. Control 2021, 26, 169–185. [Google Scholar] [CrossRef]
- Qiu, J.H.; He, F. Ekeland variational principles for set-valued functions with set perturbations. Optimization 2020, 69, 925–960. [Google Scholar] [CrossRef]
- Luc, D.T. Theory of vector optimization. In Lecture Notes in Economics and Mathematical Systems; Springer: Berlin/Heidelberg, Germany, 1989; Volume 319. [Google Scholar]
- Chen, G.Y.; Huang, X.X. Ekeland’s variational principle for set-valued mappings. Math. Methods Oper. Res. 1998, 48, 181–186. [Google Scholar] [CrossRef]
- Meghea, I. Ekeland Variational Principle with Generalizations and Variants; Éditions des Archives Contemporaines; Old City Publishing: Philadelphia, PA, USA; Paris, France, 2009. [Google Scholar]
- Ekeland, I. Sur les problèmes variationnels. C. R. Acad. Sci. Paris Sér. A-B 1972, 275, 1057–1059. [Google Scholar]
- Ekeland, I. On the variational principle. J. Math. Anal. Appl. 1974, 47, 324–353. [Google Scholar] [CrossRef]
- Caristi, J. Fixed point theorems for mappings satisfying inwardness conditions. Trans. Am. Math. Soc. 1976, 215, 241–251. [Google Scholar] [CrossRef]
- Hamel, A. Equivalents to Ekeland’s variational principle in uniform spaces. Nonlinear Anal. 2005, 62, 913–924. [Google Scholar] [CrossRef]
- Meghea, I.; Stamin, C.S. Remarks on some variants of minimal point theorem and Ekeland variational principle with applications. Demonstr. Math. 2022, 55, 354–379. [Google Scholar] [CrossRef]
- Kirk, W.A. Caristi’s fixed point theorem and metric convexity. Colloq. Math. 1976, 36, 81–86. [Google Scholar] [CrossRef]
- Clarke, F.H. Optimization and non-smooth analysis. In Canadian Mathematical Society; John Wiley & Sons: Hoboken, NJ, USA, 1983. [Google Scholar]
- Hiriart-Urruty, J.B. New concepts in nondifferentiable programming. Bull. Soc. Math. Fr. 1979, 60, 57–85. [Google Scholar] [CrossRef]
- Zaffaroni, A. Degrees of efficiency and degrees of minimality. SIAM J. Control Optim. 2003, 42, 1071–1086. [Google Scholar] [CrossRef]
- Ha, T.X.D. Variants of the Ekeland variational principle for a set-valued map involving the Clarke normal cone. J. Math. Anal. Appl. 2006, 316, 346–356. [Google Scholar] [CrossRef]
- Schweizer, B.; Sklar, A.; Thorp, E. The metrization of statistical metric spaces. Pac. J. Math. 1960, 10, 673–675. [Google Scholar] [CrossRef]
- Chang, S.S.; Chen, Y.Q.; Guo, J.L. Ekeland’s variational principle and Caristi’s fixed point theorem in probabilistic metric spaces. Acta Math. Appl. Sin. 1991, 7, 217–230. [Google Scholar]
- Schaefer, H. Topological Vector Spaces; Third Printing; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1971. [Google Scholar]
- Chang, K.-C. Variational methods for non-differentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 1981, 80, 102–129. [Google Scholar] [CrossRef]
- Zhang, C.-L.; Huang, N.-J. On Ekeland’s variational principle for interval-valued functions with applications. Fuzzy Sets Syst. 2022, 436, 152–174. [Google Scholar] [CrossRef]
- Sofonea, M.; Matei, A. Mathematical Models in Contact Mechanics; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Colli, P.; Gilardi, G.; Grasselli, M.; Schimperna, G. Global existence for the conserved phase field model with memory and quadratic nonlinearity. Port. Math. 2001, 58, 159–170. [Google Scholar]
- Sadiq, A.N. The Dynamics and Optimal Control of a Prey-Predator System. Glob. J. Pure Appl. Math. 2017, 13, 5287–5298. [Google Scholar]
- Danca, M.; Codreanu, S.; Bakó, B. Detailed analysis of a nonlinear prey-predator model. J. Biol. Phys. 1997, 23, 11–20. [Google Scholar] [CrossRef]
- Bao, T.Q.; Cobzaş, S.; Soubeyran, A. Variational principles, completeness and the existence of traps in behavioral sciences. Ann. Oper. Res. 2018, 269, 53–79. [Google Scholar] [CrossRef]
- Bao, T.Q.; Mordukhovich, B.S.; Soubeyran, A. Variational Analysis in Psychological Modeling. J. Optim. Theory Appl. 2015, 164, 290–315. [Google Scholar] [CrossRef]
- Mielke, A.; Theil, F. On rate-independent hysteresis models. Nonlinear Differ. Equ. Appl. 2004, 11, 151–189. [Google Scholar] [CrossRef]
- Yong, J.; Zhou, X.Y. Stochastic Controls: Hamiltonian Systems and HJB Equations; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Migórski, S.; Ochal, A.; Sofonea, M. Nonlinear Inclusions and Hemivariational Inequalities: Models and Analysis of Contact Problems; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Raiz, M.; Rao, N.; Mishra, V.N. Szasz-Type Operators Involving q-Appell Polynomials. In Approximation Theory, Sequence Spaces and Applications; Mohiuddine, S.A., Hazarika, B., Nashine, H.K., Eds.; Industrial and Applied Mathematics; Springer: Singapore, 2022. [Google Scholar]
- Khan, T.; Khan, S.A.; Rao, N. On Approximation by Bivariate Szasz-Gamma Type Hybrid Operators. Bull. Math. Anal. Appl. 2022, 14, 11–27. [Google Scholar]
- Ayman-Mursaleen, M.; Nasiruzzaman, M.; Rao, N. On the Approximation of Szász-Jakimovski-Leviatan Beta Type Integral Operators Enhanced by Appell Polynomials. Iran. J. Sci. 2025, 49, 1013–1022. [Google Scholar] [CrossRef]
- Rao, N.; Farid, M.; Jha, N.K. Szász-integral Operators Linking Appell Polynomials. AIMS Math. 2025, 10, 13836–13854. [Google Scholar] [CrossRef]
- Ayman Mursaleen, M.; Serra-Capizzano, S. Statistical convergence via q-Calculus for Statistical Convergence. Axioms 2022, 11, 70. [Google Scholar] [CrossRef]
- Younis, M.; Dar, A.H.; Hussain, N. Revised algorithm for finding a common solution of variational inclusion and fixed point problems. Filomat 2023, 37, 6949–6960. [Google Scholar] [CrossRef]
- Panagiotopoulos, P.D. Hemivariational Inequalities: Applications in Mechanics and Engineering; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Haslinger, J.; Miettinen, M.; Panagiotopoulos, P.D. Finite Element Method for Hemivariational Inequalities: Theory, Methods and Applications; Springer-Science+Business Media B.V.: Dordrecht, The Netherlands, 1999. [Google Scholar]
- Wriggers, P. Computational Contact Mechanics, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Cobzaş, S. Ekeland, Takahashi and Caristi principles in quasi-pseudometric spaces. Topol. Appl. 2019, 265, 106831. [Google Scholar] [CrossRef]
- Cobzaş, S. The Strong Ekeland Variational Principle in Quasi-Pseudometric Spaces. Mathematics 2024, 12, 471. [Google Scholar] [CrossRef]
- Qiu, J.-H. A pre-order principle and set-valued Ekeland variational principle. J. Math. Anal. Appl. 2014, 419, 904–937. [Google Scholar] [CrossRef]
- Lin, L.-J.; Ansari, Q.-H.; Huang, Y.-J. System of vector quasi-variational inclusions with some applications. Nonlinear Anal. 2008, 69, 2812–2824. [Google Scholar] [CrossRef]
| Differences | First Variant | Second Variant | Third Variant |
|---|---|---|---|
| Frame | (X, d) is a complete metric space | X and Y are real Banach spaces | 0 - complete Menger PM-space |
| Y metrizable real locally convex | Clarke tangent cone to the graph of a multivalued function | ||
| C closed pointed convex cone with vertex | Hiriart-Urruty functional | property (2.57) | |
| Multivalued map properties | f proper, with compact values | f with compact values | bounded from below |
| C-bounded from below | C-bounded from below | lower semicontinuous | |
| upper semicontinuous | upper semicontinuous | other specific properties | |
| other specific properties of f | other specific properties of f | ||
| Assertions | in dom f | -minimizer (xε, yε) of f | ∃vε |
| ) | specific properties | ∗-maximal among ∗-majorants | |
| specific properties | expression with coderivative | specific properties | |
| a specific expression | a specific expression | a specific expression |
| Type of Variant | Map Types | Results | Applications |
|---|---|---|---|
| Single-valued Ekeland principle | smooth functions | ε-minimizers near the true minimum of a function | convex optimization |
| existence results for PDEs | |||
| Lipschitz or convex nonsmooth | existence of stable ε-minimizers close to the true minimum | machine learning | |
| hemivariational inequalities | |||
| Multivalued Ekeland principle | mappings where each input may have multiple possible outputs | existence of ε-solutions within the “value sets” | optimization and control |
| contact mechanics (friction laws) | |||
| economics and equilibrium theory | |||
| game theory, multiple responses | |||
| population dynamics | |||
| PDEs with weights |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meghea, I. Remarks on Multivalued Variants of Ekeland Principle with Applications. Symmetry 2025, 17, 1848. https://doi.org/10.3390/sym17111848
Meghea I. Remarks on Multivalued Variants of Ekeland Principle with Applications. Symmetry. 2025; 17(11):1848. https://doi.org/10.3390/sym17111848
Chicago/Turabian StyleMeghea, Irina. 2025. "Remarks on Multivalued Variants of Ekeland Principle with Applications" Symmetry 17, no. 11: 1848. https://doi.org/10.3390/sym17111848
APA StyleMeghea, I. (2025). Remarks on Multivalued Variants of Ekeland Principle with Applications. Symmetry, 17(11), 1848. https://doi.org/10.3390/sym17111848

