Equality of the Singularity Critical Locus Dimension and the Newton Polyhedron Combinatorial Dimension
Abstract
1. Introduction
- 1968-2
- What topological characteristics of a real (complex) polynomial are computable from the Newton polyhedron (and the signs of the coefficients)?
- 1975-1
- Every interesting discrete invariant of a generic singularity with a Newton polyhedron is an interesting function of the polyhedron. Study: the signature, the number of moduli, the singularity index, the integral monodromy, the variation, the Bernstein polynomial, and (for a generic section).
- 1975-21
- Express the main numerical invariants of a typical singularity with a given Newton polyhedron (e.g., the signature, the genus of the 1-dimensional Milnor fiber) in terms of the polyhedron.
2. Preliminaries
- —support of f;
- —convex hull of —Newton polyhedron of f (see Figure 1);
- —family of compact faces of —Newton boundary of f;
- ;
- f—Kushnirenko nondegenerate on if the following system of equations
- f—Kushnirenko nondegenerate, if f nondegenerate on each face .
- satisfies k-condition and it does not satisfy - condition.
3. Main Results
- (i)
- ;
- (ii)
- satisfies d-condition and it does not satisfy - condition,
4. The Proof of the Main Results
- Then, Add Then, are empty sets. Hence, does not satisfy the (1) - Kushnirenko condition.
- Since f is nondegenerate, then is also nondegenerate andTherefore, without loss of a generality, we can assume thatNow, let us expand and with respect toHence, Therefore, functions are identically equal to 0, and f has a form:or Add Then, are empty sets. Hence, does not satisfy the (1)—Kushnirenko condition.
Funding
Data Availability Statement
Conflicts of Interest
References
- Arnold, V.I. Arnold’s Problems; Springer: Berlin/Heidelberg, Germany; Moscow, Russia, 2004. [Google Scholar]
- Kushnirenko, A.G. Polyèdres de Newton et nombres de Milnor. Invent. Math. 1976, 32, 1–31. [Google Scholar] [CrossRef]
- Zaharia, J. On the bifurcation set of a polynomial function and Newton boundary II. Kodai Math. J. 1996, 19, 218–233. [Google Scholar] [CrossRef]
- Varchenko, A.N. Zeta-function of monodromy and Newton’s diagram. Invent. Math. 1976, 37, 253–262. [Google Scholar] [CrossRef]
- Brzostowski, S. A note on the Łojasiewicz exponent of non-degenerate isolated hypersurface singularities. In Analytic and Algebraic Geometry; Krasiński, T., Spodzieja, S., Eds.; Lodz University Press: Lodz, Poland, 2019; Volume 3, pp. 27–40. [Google Scholar]
- Brzostowski, S.; Krasiński, T.; Oleksik, G. The Łojasiewicz exponent of nondegenerate surface singularities. Canad. Math. Bull. 2023, 64, 1391–1410. [Google Scholar] [CrossRef]
- Fukui, T. Łojasiewicz type inequalities and Newton diagrams. Proc. Am. Math. Soc. 1991, 112, 1169–1183. [Google Scholar] [CrossRef]
- Lenarcik, A. On the Łojasiewicz exponent of the gradient of a holomorphic function. Banach Center Publ. 1998, 112, 149–166. [Google Scholar] [CrossRef]
- Lichtin, B. Estimation of Lojasiewicz exponents and Newton polygons. Invent. Math. 1981, 64, 417–429. [Google Scholar] [CrossRef]
- Eyral, C.; Oleksik, G.; Różycki, A. Lê numbers and Newton diagram. Adv. Math. 2021, 376, 107441. [Google Scholar] [CrossRef]
- Esterov, A.I. Determinantal Singularities and Newton Polyhedra. Trudy Mat. Inst. Steklova 2007, 259, 20–38. [Google Scholar] [CrossRef]
- Varella Costa, M.D. Newton Polyhedra and Invariants of Determinantal Singularities. Ph.D. Thesis, Universidade Federal de São Carlos, São Carlos, Brasil, 2024. [Google Scholar]
- Brzostowski, S.; Oleksik, G. On combinatorial criteria for non-degenerate singularities. Kodai Math. J. 2008, 39, 455–468. [Google Scholar] [CrossRef]
- Oleksik, G. On a generic dimension of the critical locus. Results Math. 2020, 75, 1–9. [Google Scholar] [CrossRef]
- Cox, D.A.; Little, J.; O’Shea, D. Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Wall, C.T.C. Newton polytopes and non-degeneracy. J. Reine Angew. Math. 1999, 509, 1–19. [Google Scholar]
- Oka, M. Non-Degenerate Complete Intersection Singularity; Hermann: Paris, France, 1997. [Google Scholar]
- Mondal, P. How Many Zeroes? Springer CMS/CAIM: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Damon, J.; Gaffney, T. Topological triviality of deformations of functions and Newton filtrations. Invent. Math. 1983, 72, 335–358. [Google Scholar] [CrossRef]
- Mather, J. Stability of C∞ mappings III. Publ. Math. I.H.É.S. 1969, 35, 127–156. [Google Scholar] [CrossRef]
- Tougeron, J.-C. Idéaux de fonctions différentiables I. Ann. Inst. Fourier 1968, 8, 177–240. [Google Scholar] [CrossRef]
- Kushnirenko, A.G. Criteria for the existence of a non-degenerate quasihomogeneous function with given weights. Usp. Mat Nauk 1977, 32, 169–170. (In Russian) [Google Scholar]
- Hertling, C.A.; Kurbel, R. On the classification of quasihomogeneous singularities. J. Singul. 2012, 4, 131–153. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oleksik, G. Equality of the Singularity Critical Locus Dimension and the Newton Polyhedron Combinatorial Dimension. Symmetry 2025, 17, 1710. https://doi.org/10.3390/sym17101710
Oleksik G. Equality of the Singularity Critical Locus Dimension and the Newton Polyhedron Combinatorial Dimension. Symmetry. 2025; 17(10):1710. https://doi.org/10.3390/sym17101710
Chicago/Turabian StyleOleksik, Grzegorz. 2025. "Equality of the Singularity Critical Locus Dimension and the Newton Polyhedron Combinatorial Dimension" Symmetry 17, no. 10: 1710. https://doi.org/10.3390/sym17101710
APA StyleOleksik, G. (2025). Equality of the Singularity Critical Locus Dimension and the Newton Polyhedron Combinatorial Dimension. Symmetry, 17(10), 1710. https://doi.org/10.3390/sym17101710