On the Symmetric Form of the Three Primes Theorem Weighted by Δ(x)
Abstract
1. Introduction
2. Main Result
Notations
3. The Circle Method
4. Additional Lemmas
5. Asymptotic Formula for
5.1. Asymptotic Formula for
5.1.1. Case 1
5.1.2. Case 2
5.1.3. Case 3
5.1.4. Case 4
5.2. Asymptotic Formula for
6. Upper Bound Estimate for
7. Proof of Theorem 2
8. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Huxley, M.N. Exponential sums and lattice points. II. Proc. Lond. Math. Soc. 1993, 66, 279–301. [Google Scholar] [CrossRef]
- Kolesnik, G. On the order of ζ( + it) and Δ(R). Pac. J. Math. 1982, 98, 107–122. [Google Scholar] [CrossRef]
- van der Corput, J.G. Zum Teilerproblem. Math. Ann. 1928, 98, 697–716. [Google Scholar] [CrossRef]
- Voronoï, G. Sur une fonction transcendante et ses applications à la sommation de quelques séries. Ann. Sci. École Norm. Sup. 1904, 21, 207–267. [Google Scholar] [CrossRef]
- Huxley, M.N. Exponential sums and lattice points. III. Proc. Lond. Math. Soc. 2003, 87, 591–609. [Google Scholar] [CrossRef]
- Lau, Y.-K.; Tsang, K.-M. On the mean square formula of the error term in the Dirichlet divisor problem. Math. Proc. Camb. Philos. Soc. 2009, 146, 277–287. [Google Scholar] [CrossRef]
- Ivić, A. The Riemann Zeta-Function; A Wiley-Interscience Publication; John Wiley & Sons, Inc.: New York, NY, USA, 1985. [Google Scholar]
- Ivić, A.; Sargos, P. On the higher moments of the error term in the divisor problem. Ill. J. Math. 2007, 51, 353–377. [Google Scholar] [CrossRef]
- Cao, X.; Tanigawa, Y.; Zhai, W. On hybrid moments of Δ2(x) and Δ3(x). Ramanujan J. 2022, 58, 597–631. [Google Scholar] [CrossRef]
- Li, J. On the seventh power moment of Δ(x). Int. J. Number Theory 2017, 13, 571–591. [Google Scholar] [CrossRef]
- Tsang, K.M. Higher-power moments of Δ(x), E(t) and P(x). Proc. Lond. Math. Soc. 1992, 65, 65–84. [Google Scholar] [CrossRef]
- Zhai, W. On higher-power moments of Δ(x). II. Acta Arith. 2004, 114, 35–54. [Google Scholar] [CrossRef]
- Zhai, W. On higher-power moments of Δ(x). III. Acta Arith. 2005, 118, 263–281. [Google Scholar] [CrossRef]
- Zhang, D.; Zhai, W. On the fifth-power moment of Δ(x). Int. J. Number Theory 2011, 7, 71–86. [Google Scholar] [CrossRef]
- Cao, X.; Furuya, J.; Tanigawa, Y.; Zhai, W. On the differences between two kinds of mean value formulas of number-theoretic error terms. Int. J. Number Theory 2014, 10, 1143–1170. [Google Scholar] [CrossRef]
- Furuya, J. On the average orders of the error term in the Dirichlet divisor problem. J. Number Theory 2005, 115, 1–26. [Google Scholar] [CrossRef]
- Hardy, G.H. The Average Order of the Arithmetical Functions P(x) and Δ(x). Proc. Lond. Math. Soc. 1916, 15, 192–213. [Google Scholar] [CrossRef]
- Voronoi, G. Sur un problème du calcul des fonctions asymptotiques. J. Reine Angew. Math. 1903, 126, 241–282. [Google Scholar] [CrossRef]
- Guo, Z.; Li, X. On a sum of the error term of the dirichlet divisor function over primes. arXiv 2024, arXiv:2410.00329. [Google Scholar]
- Guo, Z.; Li, X. On high power moments of the error term of the dirichlet divisor function over primes. arXiv 2024, arXiv:2410.00936. [Google Scholar]
- Vinogradov, I.M. Representation of an odd number as the sum of three primes. Proc. Ussr Acad. Sci. 1937, 15, 129–132. [Google Scholar]
- Iwaniec, H.; Kowalski, E. Analytic Number Theory; Volume 53 of American Mathematical Society Colloquium Publications; American Mathematical Society: Providence, RI, USA, 2004. [Google Scholar]
- D. R. Heath-Brown. Prime numbers in short intervals and a generalized Vaughan identity. Can. J. Math. 1982, 34, 1365–1377. [Google Scholar] [CrossRef]
- Srinivasan, B.R. The lattice point problem of many-dimensional hyperboloids. II. Acta Arith. 1963, 8, 173–204. [Google Scholar] [CrossRef]
- Graham, S.W.; Kolesnik, G. Van der Corput’s Method of Exponential Sums; volume 126 of London Mathematical Society Lecture Note Series; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Karatsuba, A.A. Basic Analytic Number Theory; Russian Edition; Springer: Berlin, Germany, 1993. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z. On the Symmetric Form of the Three Primes Theorem Weighted by Δ(x). Symmetry 2025, 17, 76. https://doi.org/10.3390/sym17010076
Guo Z. On the Symmetric Form of the Three Primes Theorem Weighted by Δ(x). Symmetry. 2025; 17(1):76. https://doi.org/10.3390/sym17010076
Chicago/Turabian StyleGuo, Zhen. 2025. "On the Symmetric Form of the Three Primes Theorem Weighted by Δ(x)" Symmetry 17, no. 1: 76. https://doi.org/10.3390/sym17010076
APA StyleGuo, Z. (2025). On the Symmetric Form of the Three Primes Theorem Weighted by Δ(x). Symmetry, 17(1), 76. https://doi.org/10.3390/sym17010076