Numerical Study of Carreau Fluid Flow in Symmetrically Branched Tubes
Abstract
:1. Introduction
2. Methods
2.1. Geometrical Modeling
2.2. Mathematical Modeling
2.3. Numerical Modeling
2.4. Network Flow Performance
3. Results and Discussion
3.1. Pressure Drop Characteristics
3.2. Hess–Murray Law
3.3. Network Flow Performance Evaluation
3.4. Flow Asymmetry Evaluation
4. Conclusions
- The network with the least resistance has the lowest svelteness ratio and the largest diameter ratio (i.e., Sv = 3.62 and aD = 1.0);
- Svelte structures tend to better distribute fluid flow, within the studied range, the geometry with Sv = 18.52 and aD = 0.60 presented the most homogeneous FRP between the model outputs, at the cost of increasing the yield strength by approximately 100 times;
- According to the construction law, the most homogeneous flow distribution with the lowest possible energy cost is also facilitating access. Thus, the structure that best distributes resistances Ri/RT along the branch levels is the one that eases the flows, and aD = 0.75 and Sv = 8.11 characterize the network that best achieves this objective.
Upcoming Studies
- Study of the effects of Carreau fluid flow on isomeric structures;
- Expansion and validation of other non-Newtonian fluid flow models;
- Explore and evaluate tree-shaped networks with more than three levels of branching;
- Examine how homothetic relationships affect structures with asymmetrical bifurcations and their requirements for symmetric flows.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bejan, A. Shape and Structure, From Engineering to Nature, 1st ed.; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Emerson, D.R.; Cieslicki, K.; Gu, X.; Barber, R.W. Biomimetic design of microfluidic manifolds based on a generalised Murray’s law. Lab Chip 2006, 6, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Pepe, V.R.; Miguel, A.F.; Zinani, F.S.F.; Rocha, L.A.O. Fluid Flow Through Isomeric Constructal Networks of Tubes. J. Porous Media 2024, 27, 1–18. [Google Scholar] [CrossRef]
- Pepe, V.R.; Miguel, A.F.; Zinani, F.S.F.; Rocha, L.A.O. New insights into creeping fluid flow through dendritic networks: A constructal view. Int. Commun. Heat Mass Transf. 2022, 139, 106409. [Google Scholar] [CrossRef]
- Miguel, A.F. An assessment of branching asymmetry of the tracheobronchial tree. Sci. Rep. 2022, 12, 10145. [Google Scholar] [CrossRef] [PubMed]
- Barnes, H. A Handbook of Elementary Rheology, 1st ed.; University of Wales: Cardiff, UK, 2000. [Google Scholar]
- Chhabra, R.P.; Richradson, J.F. Non-Newtonian Flow and Applied Rheology, 2nd ed.; Butterworth-Heinemann: Cambridge, UK, 2011. [Google Scholar]
- Pradhan, K.; Guha, A.; Halder, P.K. Characteristics of pressure drop, mass flow distribution and flow asymmetry in three-dimensional branching networks based on model human bronchial tree. Z. Angew. Math. Mech. 2020, 100, e201900022. [Google Scholar] [CrossRef]
- Andrade Jr, J.S.; Alencar, A.M.; Almeida, M.P.; Mendes Filho, J.; Buldyrev, S.V.; Zapperi, S.; Stanley, H.E.; Suki, B. Asymmetric flow in symmetric branched structures. Phys. Rev. Let. 1998, 81, 926–929. [Google Scholar] [CrossRef]
- Amiri, M.H.; Keshavarzi, A.; Karimipour, A.; Bahiraei, M.; Goodarzi, M.; Esfahani, J.A. A 3-D numerical simulation of non-Newtonian blood flow through femoral artery bifurcation with a moderate arteriosclerosis: Investigating Newtonian/non-Newtonian flow and its effects on elastic vessel walls. Heat Mass Transf. 2019, 55, 2037–2047. [Google Scholar] [CrossRef]
- Abbasian, M.; Shams, M.; Valizadeh, Z.; Moshfegh, A.; Javadzadegan, A.; Cheng, S. Effects of different non-Newtonian models on unsteady blood flow hemodynamics in patient-specific arterial models with in-vivo validation. Comput. Methods Programs Biomed. 2020, 186, 105185. [Google Scholar] [CrossRef]
- Sauermoser, M.; Kjelstrup, S.; Kizilova, N.; Pollet, B.; Flekkøy, E.G. Seeking minimum entropy production for a tree-like flow-field in a fuel cell. Phys. Chem. 2020, 22, 6993–7003. [Google Scholar] [CrossRef] [PubMed]
- Weddell, J.C.; Kwack, J.; Imoukhuede, P.I.; Masud, A. Hemodynamic Analysis in an Idealized Artery Tree: Differences in Wall Shear Stress between Newtonian and Non-Newtonian Blood Models. PLoS ONE 2015, 10, e0124575. [Google Scholar] [CrossRef] [PubMed]
- Rana, J.; Murthy, P. Unsteady solute dispersion in non-Newtonian fluid flow in a tube with wall absorption. Proc. R. Soc. A 2016, 472, 061908. [Google Scholar] [CrossRef]
- Asghar, Z.; Khan, M.W.S.; Gondal, M.A.; Ghaffari, A. Magnetohydrodynamic flow of Carreau Yasuda fluid inside a complex wavy passage formed by beating cilia: A finite-difference analysis. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2023. [Google Scholar] [CrossRef]
- Miguel, A.F. Blood flow through a 3D stenosed artery and its constrained bypass graft design. Res. Biomed. Eng. 2024, 40, 297–305. [Google Scholar] [CrossRef]
- Chen, J.; Lu, X.; Wang, W. Non-Newtonian effects of blood flow on hemodynamics in distal vascular graft anastomoses. J. Biomech. 2006, 39, 1983–1995. [Google Scholar] [CrossRef] [PubMed]
- Hashim, A.; Khan, M.; Saleh Alshomrani, A. Characteristics of melting heat transfer during flow of Carreau fluid induced by a stretching cylinder. Eur. Phys. J. 2017, 40, 8. [Google Scholar] [CrossRef]
- Moukhtari, F.E.; Lecampion, B. A semi-infinite hydraulic fracture driven by a shear-thinning fluid. J. Fluid Mech. 2018, 838, 573–605. [Google Scholar] [CrossRef]
- Bejan, A.; Lorente, S. Design with Constructal Theory, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Miguel, A.F. Low dissipative configuration in flow networks subject to constraints. Physica D 2014, 467, 13426. [Google Scholar] [CrossRef]
- Hess, W.R. Über die periphere Regulierung der Blutzirkulation. Arch. Ges. Physiol. 1917, 168, 439–490. [Google Scholar] [CrossRef]
- Murray, C.D. The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proc. Natl. Acad. Sci. USA 1926, 12, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Patankar, S.V. Numerical Heat Transfer and Fluid Flow; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Murray, C.D. The physiological principle of minimum work applied to the angle of branching of arteries. J. Gen. Physiol. 1926, 9, 835–841. [Google Scholar] [CrossRef]
- Irgens, F. Rheology and Non-Newtonian Fluids; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Kim, N.; Reddy, J.N. A spectral/hp least-squares finite element analysis of the Carreau–Yasuda fluids. Int. J. Numer. Meth. Fluids 2016, 82, 541–566. [Google Scholar] [CrossRef]
- Roache, P.J. Quantification of uncertainty in computational fluid dynamics. Annu. Rev. Fluid Mech. 1997, 29, 123–160. [Google Scholar] [CrossRef]
- Celik, I.B.; Ghia, U.; Roache, P.J. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng. 2008, 130, 078001. [Google Scholar] [CrossRef]
- Pellejero, D.C.; Mayer, R.V.; Gotardo, M.; Zinani, F.S.F.; Rocha, L.A.O. Design Construtal De Bifurcações em Forma De Y Para Escoamentos De Fluidos De Carreau. Rev. Mundi Eng. Tecnol. E Gestão 2021, 6, 335-01–335-30. [Google Scholar] [CrossRef]
- Zhang, C.H.; Liu, Y.; So, R.M.C.; Phan-Thien, N. The Influence of Inlet Velocity Profile on Three-Dimensional Three-Generation Bifurcating Flows. Comput. Mech. 2002, 29, 422–429. [Google Scholar] [CrossRef]
- Liu, Y.; So, R.M.C.; Zhang, C.H. Modeling the Bifurcating Flow in a Human Lung Airway. J. Biomech. 2002, 35, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Wechsatol, W.; Lorente, S.; Bejan, A. Tree-shaped flow structures with local junction losses. Int. J. Heat Mass Transf. 2006, 49, 2957–2964. [Google Scholar] [CrossRef]
ReD | λ | η* | n | Case | |
---|---|---|---|---|---|
100 | 175 | 3 | 15 | 0.35 | C1 |
175 | 3 | 15 | 0.60 | C2 | |
2917 | 50 | 15 | 0.35 | C3 | |
2917 | 50 | 15 | 0.60 | C4 | |
250 | 438 | 3 | 15 | 0.35 | C5 |
438 | 3 | 15 | 0.60 | C6 | |
7292 | 50 | 15 | 0.35 | C7 | |
7292 | 50 | 15 | 0.60 | C8 |
1.00 | 0.85 | 0.80 | 0.75 | 0.70 | 0.65 | 0.60 | |
---|---|---|---|---|---|---|---|
EuN1 | 0.357 | 0.502 | 0.811 | 2.291 | 5.051 | 14.066 | 56.916 |
EuN2 | 0.351 | 0.498 | 0.805 | 2.281 | 4.980 | 13.780 | 55.920 |
EuN3 | 0.346 | 0.488 | 0.789 | 2.261 | 4.966 | 13.746 | 55.584 |
N1 | 4,673,233 | 4,647,629 | 4,940,460 | 4,931,950 | 5,207,548 | 5,468,679 | 6,134,257 |
N2 | 2,788,063 | 3,873,024 | 4,117,050 | 4,109,958 | 4,691,485 | 4,926,738 | 5,526,358 |
N3 | 531,438 | 762,199 | 837,684 | 859,554 | 973,490 | 1,093,821 | 1,303,078 |
GCI | 1.57% | 1.40% | 1.16% | 1.13% | 1.20% | 1.19% | 2.18% |
Flow structure | Pellejero (2020) [30] | Present CFD study with one branching level |
Number of branching levels | 1 | 1 |
aD | 1.00 | 1.00 |
aL | 1.00 | 1.00 |
135° | 75° | |
1 | 1 | |
0.1 | 0.1 | |
(kg/m3) | 1000 | 1000 |
η0 (Pa∙s) | 0.0015 | 0.0015 |
η∞ (Pa∙s) | 0.0001 | 0.0001 |
λ (s) | 333,333.33 | 333,333.33 |
n | 0.35 | 0.35 |
ReD | 300 | 300 |
150 | 150 | |
Hexahedral cells | 4,588,271 | 4,288,949 |
RT (Pa∙s/kg) | 0.019752721 | 0.021560961 |
----- | 0.083 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pepe, V.; Miguel, A.F.; Zinani, F.; Rocha, L. Numerical Study of Carreau Fluid Flow in Symmetrically Branched Tubes. Symmetry 2025, 17, 48. https://doi.org/10.3390/sym17010048
Pepe V, Miguel AF, Zinani F, Rocha L. Numerical Study of Carreau Fluid Flow in Symmetrically Branched Tubes. Symmetry. 2025; 17(1):48. https://doi.org/10.3390/sym17010048
Chicago/Turabian StylePepe, Vinicius, Antonio F. Miguel, Flávia Zinani, and Luiz Rocha. 2025. "Numerical Study of Carreau Fluid Flow in Symmetrically Branched Tubes" Symmetry 17, no. 1: 48. https://doi.org/10.3390/sym17010048
APA StylePepe, V., Miguel, A. F., Zinani, F., & Rocha, L. (2025). Numerical Study of Carreau Fluid Flow in Symmetrically Branched Tubes. Symmetry, 17(1), 48. https://doi.org/10.3390/sym17010048