On Ulam Stability of Functional Equations in Non-Archimedean Spaces
Abstract
:1. Introduction
1.1. Functional Equations
1.2. Ulam Stability
1.3. Non-Archimedean Fields and Spaces
2. Stability of Functional Equations in Non-Archimedean Normed Spaces
2.1. Cauchy, Jordan–von Neumann, and Jensen Equations
2.2. Multi-Additive, Multi-Quadratic and Multi-Jensen Mappings
2.3. Some Other Equations
2.4. Functional Equations in a Single Variable
2.5. Hyperstability
2.6. Instability
3. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hyers, D.H. On the stability of the linear functional equation. Proc. Nat. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef]
- Brzdęk, J.; Popa, D.; Raşa, I.; Xu, B. Ulam Stability of Operators; Academic Press: London, UK, 2018. [Google Scholar]
- Jung, S.-M. Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis; Springer: New York, NY, USA, 2011. [Google Scholar]
- Hyers, D.H.; Isac, G.; Rassias, T.M. Stability of Functional Equations in Several Variables; Birkhäuser: Boston, MA, USA, 1998. [Google Scholar]
- Brillouët-Belluot, N.; Brzdęk, J.; Ciepliński, K. On some recent developments in Ulam’s type stability. Abstr. Appl. Anal. 2012, 2012, 716936. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Xu, B.; Zhang, W. Stability of functional equations in single variable. J. Math. Anal. Appl. 2003, 288, 852–869. [Google Scholar] [CrossRef]
- Forti, G.L. Hyers-Ulam stability of functional equations in several variables. Aequationes Math. 1995, 50, 143–190. [Google Scholar] [CrossRef]
- Bahyrycz, A.; Brzdęk, J.; El-hady, E.-s.; Leśniak, Z. On Ulam stability of functional equations in 2-normed spaces—A survey. Symmetry 2021, 13, 2200. [Google Scholar] [CrossRef]
- El-hady, E.-s.; Brzdęk, J. On Ulam stability of functional equations in 2-normed spaces—A survey II. Symmetry 2022, 14, 1365. [Google Scholar] [CrossRef]
- Kuczma, M. An Introduction to the Theory of Functional Equations and Inequalities. Cauchy’s Equation and Jensen’s Inequality; Birkhäuser: Basel, Switzerland, 2009. [Google Scholar]
- Aczél, J.; Dhombres, J. Functional Equations in Several Variables; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Kannappan, P.l. Functional Equations and Inequalities with Applications; Springer: New York, NY, USA, 2009. [Google Scholar]
- Sahoo, P.K.; Kannappan, P.l. Introduction to Functional Equations; CRC Press: Boca Raton, MA, USA, 2011. [Google Scholar]
- Kuczma, M. Functional Equations in a Single Variable; Państwowe Wydawnictwo Naukowe: Warszawa, Poland, 1968. [Google Scholar]
- Kuczma, M.; Choczewski, B.; Ger, R. Iterative Functional Equations; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Baron, K.; Jarczyk, W. Recent results on functional equations in a single variable, perspectives and open problems. Aequationes Math. 2001, 61, 1–48. [Google Scholar] [CrossRef]
- Belitskii, G.; Tkachenko, V. One-Dimensional Functional Equations; Birkhäuser: Basel, Switzerland, 2003. [Google Scholar]
- Lyubich, Y.I. The cohomological equations in nonsmooth categories. Banach Center Publ. 2017, 112, 221–272. [Google Scholar] [CrossRef]
- Wilkinson, A. The cohomological equation for partially hyperbolic diffeomorphisms. Astérisque 2013, 358, 75–165. [Google Scholar]
- Alexander, D.S. A History of Complex Dynamics. From Schröder to Fatou and Julia; Vieweg: Braunschweig, Germany, 1994. [Google Scholar]
- Badora, R.; Brzdęk, J.; Ciepliński, K. Applications of Banach limit in Ulam stability. Symmetry 2021, 13, 841. [Google Scholar] [CrossRef]
- Alsmeyer, G.; Mallein, B. A simple method to find all solutions to the functional equation of the smoothing transform. J. Theoret. Probab. 2022, 35, 2569–2599. [Google Scholar] [CrossRef]
- Farzadfard, H. Periodic solutions of the Poincaré functional equation: Uniqueness. Proc. Amer. Math. Soc. 2022, 150, 279–288. [Google Scholar] [CrossRef]
- Burdzy, K.; Ostaszewski, A. Freezing in space-time: A functional equation linked with a PDE system. J. Math. Anal. Appl. 2023, 524, 127018. [Google Scholar] [CrossRef]
- Grove, K.; Karcher, H.; Ruh, E.A. Jacobi fields and Finsler metrics on compact Lie groups with an application to differentiable pinching problems. Math. Ann. 1974, 211, 7–21. [Google Scholar] [CrossRef]
- Kazhdan, D. On ε-representations. Israel J. Math. 1982, 43, 315–323. [Google Scholar] [CrossRef]
- Gowers, W.T.; Hatami, O. Inverse and stability theorems for approximate representations of finite groups. Sb. Math. 2017, 208, 1784–1817. [Google Scholar] [CrossRef]
- Aoki, T. On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 1950, 2, 64–66. [Google Scholar] [CrossRef]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Gajda, Z. On stability of additive mappings. Internat. J. Math. Math. Sci. 1991, 14, 431–434. [Google Scholar] [CrossRef]
- Rassias, T.M. On a modified Hyers-Ulam sequence. J. Math. Anal. Appl. 1991, 158, 106–113. [Google Scholar] [CrossRef]
- Bourgin, D.G. Classes of transformations and bordering transformations. Bull. Amer. Math. Soc. 1951, 57, 223–237. [Google Scholar] [CrossRef]
- Ciepliński, K. On perturbations of two general equations in several variables. Math. Ann. 2023, 385, 921–937. [Google Scholar] [CrossRef]
- Popa, D.; Rasa, I.; Viorel, A. Approximate solutions of the logistic equation and Ulam stability. Appl. Math. Lett. 2018, 85, 64–69. [Google Scholar] [CrossRef]
- Onitsuka, M. Conditional Ulam stability and its application to the logistic model. Appl. Math. Lett. 2021, 122, 107565. [Google Scholar] [CrossRef]
- Onitsuka, M. Conditional Ulam stability and its application to von Bertalanffy growth model. Math. Biosci. Eng. 2022, 19, 2819–2834. [Google Scholar] [CrossRef]
- Kondo, M.; Onitsuka, M. Ulam type stability for von Bertalanffy growth model with Allee effect. Math. Biosci. Eng. 2024, 21, 4698–4723. [Google Scholar] [CrossRef]
- Onitsuka, M. Approximate solutions of generalized logistic equation. Discrete Contin. Dyn. Syst. Ser. B 2024, 29, 4505–4526. [Google Scholar] [CrossRef]
- Katok, S. p-Adic Analysis Compared with Real; American Mathematical Society: Providence, RI, USA, 2007. [Google Scholar]
- Schikhof, W.H. Ultrametric Calculus. An Introduction to p-Adic Analysis; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Schwaiger, J. Connections between the completion of normed spaces over non-archimedean fields and the stability of the Cauchy equation. Ann. Math. Sil. 2020, 34, 151–163. [Google Scholar] [CrossRef]
- Wiles, A. Modular elliptic curves and Fermat’s last theorem. Ann. Math. 1995, 141, 443–551. [Google Scholar] [CrossRef]
- Brekke, L.; Freund, P.G.O.; Olson, M.; Witten, E. Non-Archimedean string dynamics. Nuclear Phys. B 1988, 302, 365–402. [Google Scholar] [CrossRef]
- Gubser, S.S.; Knaute, J.; Parikh, S.; Samberg, A.; Witaszczyk, P. p-adic AdS/CFT. Comm. Math. Phys. 2017, 352, 1019–1059. [Google Scholar] [CrossRef]
- Parisi, G.; Sourlas, N. p-adic numbers and replica symmetry breaking. Eur. Phys. J. B Condens. Matter Phys. 2000, 14, 535–542. [Google Scholar] [CrossRef]
- Khrennikov, A.Y. Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997. [Google Scholar]
- Dragovich, B.; Khrennikov, A.Y.; Kozyrev, S.V.; Volovich, I.V.; Zelenov, E.I. p-adic mathematical physics: The first 30 years. p-Adic Numbers Ultrametric Anal. Appl. 2017, 9, 87–121. [Google Scholar] [CrossRef]
- Schwaiger, J. Functional equations for homogeneous polynomials arising from multilinear mappings and their stability. Ann. Math. Sil. 1994, 8, 157–171. [Google Scholar]
- Arriola, L.M.; Beyer, W.A. Stability of the Cauchy functional equation over p-adic fields. Real Anal. Exchange 2005, 31, 125–132. [Google Scholar] [CrossRef]
- Moslehian, M.S.; Rassias, T.M. Stability of functional equations in non-Archimedean spaces. Appl. Anal. Discret. Math. 2007, 1, 325–334. [Google Scholar] [CrossRef]
- Mirmostafaee, A.K. Approximately additive mappings in non-Archimedean normed spaces. Bull. Korean Math. Soc. 2009, 46, 387–400. [Google Scholar] [CrossRef]
- Najati, A.; Cho, Y.J. Generalized Hyers-Ulam stability of the Pexiderized Cauchy functional equation in non-Archimedean spaces. Fixed Point Theory Appl. 2011, 2011, 309026. [Google Scholar] [CrossRef]
- Mirmostafaee, A.K. Non-Archimedean stability of quadratic equations. Fixed Point Theory 2010, 11, 67–75. [Google Scholar]
- Azadi Kenary, H. Hyers-Ulam-Rassias stability of a Pexider functional equation in non-Archimedean spaces. Tamsui Oxf. J. Inf. Math. Sci. 2012, 28, 127–136. [Google Scholar]
- Moslehian, M.S. The Jensen functional equation in non-Archimedean normed spaces. J. Funct. Spaces Appl. 2009, 7, 13–24. [Google Scholar] [CrossRef]
- Ciepliński, K. Generalized stability of multi-additive mappings. Appl. Math. Lett. 2010, 23, 1291–1294. [Google Scholar] [CrossRef]
- Ciepliński, K. Stability of multi-additive mappings in non-Archimedean normed spaces. J. Math. Anal. Appl. 2011, 373, 376–383. [Google Scholar] [CrossRef]
- Ciepliński, K. On the generalized Hyers-Ulam stability of multi-quadratic mappings. Comput. Math. Appl. 2011, 62, 3418–3426. [Google Scholar] [CrossRef]
- Ji, P.; Qi, W.; Zhan, X. Generalized stability of multi-quadratic mappings. J. Math. Res. Appl. 2014, 34, 209–215. [Google Scholar]
- Zhao, X.; Yang, X.; Pang, C.-T. Solution and stability of the multiquadratic functional equation. Abstr. Appl. Anal. 2013, 2013, 415053. [Google Scholar] [CrossRef]
- Ciepliński, K.; Surowczyk, A. On the Hyers-Ulam stability of an equation characterizing multi-quadratic mappings. Acta Math. Sci. Ser. B (Engl. Ed.) 2015, 35, 690–702. [Google Scholar] [CrossRef]
- Ciepliński, K. On multi-Jensen functions and Jensen difference. Bull. Korean Math. Soc. 2008, 45, 729–737. [Google Scholar] [CrossRef]
- Prager, W.; Schwaiger, J. Multi-affine and multi-Jensen functions and their connection with generalized polynomials. Aequationes Math. 2005, 69, 41–57. [Google Scholar] [CrossRef]
- Prager, W.; Schwaiger, J. Stability of the multi-Jensen equation. Bull. Korean Math. Soc. 2008, 45, 133–142. [Google Scholar] [CrossRef]
- Xu, T.Z. Stability of multi-Jensen mappings in non-Archimedean normed spaces. J. Math. Phys. 2012, 53, 023507. [Google Scholar] [CrossRef]
- Bettencourt, G.; Mendes, S. On the stability of a quadratic functional equation over non-Archimedean spaces. Filomat 2021, 35, 2693–2704. [Google Scholar] [CrossRef]
- Aghda, D.K.; Modarres Mosaddegh, S.M.S. Stability of Deeba and Drygas functional equations in non-Archimedean spaces. J. Mahani Math. Res. Cent. 2024, 13, 167–180. [Google Scholar]
- Mirmostafaee, A.K. Non-Archimedean stability of the monomial functional equations. Tamsui Oxf. J. Math. Sci. 2010, 17, 511–524. [Google Scholar]
- Mirmostafaee, A.K. Stability of Fréchet functional equation in non-Archimedean normed spaces. Math. Commun. 2012, 26, 221–235. [Google Scholar]
- Eshaghi Gordji, M.; Savadkouhi, M.B. Stability of cubic and quartic functional equations in non-Archimedean spaces. Acta Appl. Math. 2010, 110, 1321–1329. [Google Scholar] [CrossRef]
- Bahyrycz, A.; Ciepliński, K.; Olko, J. On Hyers-Ulam stability of two functional equations in non-Archimedean spaces. J. Fixed Point Theory Appl. 2016, 18, 433–444. [Google Scholar] [CrossRef]
- Ciepliński, K. Ulam stability of a functional equation in various normed spaces. Symmetry 2020, 12, 1119. [Google Scholar] [CrossRef]
- Saadati, R.; Vaezpour, S.M.; Sadeghi, Z. On the stability of Pexider functional equation in non-archimedean spaces. J. Inequal. Appl. 2011, 2011, 17. [Google Scholar] [CrossRef]
- Ciepliński, K. On a functional equation connected with bi-linear mappings and its Hyers-Ulam stability. J. Nonlinear Sci. Appl. 2017, 10, 5914–5921. [Google Scholar] [CrossRef]
- Brzdęk, J.; Ciepliński, K. A fixed point theorem and the Hyers-Ulam stability in non-Archimedean spaces. J. Math. Anal. Appl. 2013, 400, 68–75. [Google Scholar] [CrossRef]
- Shuja, S.; Embong, A.F.; Ali, N.M.M. Hyperstability of the general linear functional equation in non-Archimedean Banach spaces. p-Adic Numbers Ultrametric Anal. Appl. 2024, 16, 70–81. [Google Scholar] [CrossRef]
- Brzdęk, J.; Ciepliński, K. Hyperstability and superstability. Abstr. Appl. Anal. 2013, 2013, 401756. [Google Scholar] [CrossRef]
- Almahalebi, M.; Chahbi, A. Hyperstability of the Jensen functional equation in ultrametric spaces. Aequationes Math. 2017, 91, 647–661. [Google Scholar] [CrossRef]
- EL-Fassi, I. On a new type of hyperstability for radical cubic functional equation in non-Archimedean metric spaces. Results Math. 2017, 72, 991–1005. [Google Scholar] [CrossRef]
- Almahalebi, M.; Charifi, A.; Park, C.; Kabbaj, S. Hyperstability results for a generalized radical cubic functional equation related to additive mapping in non-Archimedean Banach spaces. J. Fixed Point Theory Appl. 2018, 20, 40. [Google Scholar] [CrossRef]
- EL-Fassi, I. A new hyperstability result for the Apollonius equation on a restricted domain and some applications. J. Fixed Point Theory Appl. 2018, 20, 94. [Google Scholar] [CrossRef]
- Senthil Kumar, B.V.; Sabarinathan, S. A fixed point approach to non-Archimedean stabilities of IQD and IQA functional equations. Thai J. Math. 2022, 20, 69–78. [Google Scholar]
- Kaiser, Z.; Páles, Z. An example of a stable functional equation when the Hyers method does not work. J. Inequal. Pure Appl. Math. 2005, 6, 14. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciepliński, K. On Ulam Stability of Functional Equations in Non-Archimedean Spaces. Symmetry 2025, 17, 112. https://doi.org/10.3390/sym17010112
Ciepliński K. On Ulam Stability of Functional Equations in Non-Archimedean Spaces. Symmetry. 2025; 17(1):112. https://doi.org/10.3390/sym17010112
Chicago/Turabian StyleCiepliński, Krzysztof. 2025. "On Ulam Stability of Functional Equations in Non-Archimedean Spaces" Symmetry 17, no. 1: 112. https://doi.org/10.3390/sym17010112
APA StyleCiepliński, K. (2025). On Ulam Stability of Functional Equations in Non-Archimedean Spaces. Symmetry, 17(1), 112. https://doi.org/10.3390/sym17010112