Power Bounds for the Numerical Radius of the Off-Diagonal 2 × 2 Operator Matrix
Abstract
:1. Introduction
2. Some Preliminary Facts
3. Inequalities for Off-Diagonal Operator Matrix
4. Inequalities for One Operator
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhatia, R. Positive Definite Matrices; Princeton University Press: Princeton, NJ, USA, 2007. [Google Scholar]
- Zhang, F. Block Matrix Techniques. In The Schur Complement and its Applications; Zhang, F., Ed.; Springer: New York, NY, USA, 2005; pp. 83–110. [Google Scholar]
- Zhang, F. The Schur Complement and its Applications; Springer: New York, NY, USA, 2005. [Google Scholar]
- Ando, T.; Li, C.K. Special Issue: The Numerical Range and Numerical Radius. Linear Multilinear Algebra 1994, 37, 1–238. [Google Scholar] [CrossRef]
- Bhunia, P.; Bag, S.; Paul, K. Numerical radius inequalities and its applications in estimation of zero of plynomials. Linear Algebra Appl. 2019, 573, 166–177. [Google Scholar] [CrossRef]
- Bhunia, P.; Dragomir, S.S.; Moslehian, M.S.; Paul, K. Lectures on Numerical Radius Inequalities; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Gustafson, K.E.; Rao, D.K.M. Numerical Range, the Field of Values of Linear Operators and Matrices; Springer: New York, NY, USA, 1997. [Google Scholar]
- Halmos, P.R. A Hilbert Space Problem Book, 2nd ed.; Springer: New York, NY, USA, 1982. [Google Scholar]
- Horn, R.A.; Johnson, C.R. Topics in Matrix Analysis; Corrected reprint of the 1991 original; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Wu, P.Y.; Gau, H.L. Numerical Ranges of Hilbert Space Operators; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Kittaneh, F. Numerical radius inequalities for Hilbert space operators. Stud. Math. 2005, 168, 73–80. [Google Scholar] [CrossRef]
- Bag, S.; Bhunia, P.; Paul, K. Bounds of numerical radius of bounded linear operators using t-Aluthge transform. Math. Inequal. Appl. 2020, 23, 991–1004. [Google Scholar] [CrossRef]
- Bhunia, P.; Paul, K. Furtherance of numerical radius inequalities of Hilbert space operators. Arch. Math. 2021, 117, 537–546. [Google Scholar] [CrossRef]
- Bhunia, P.; Paul, K. Development of inequalities and characterization of equality conditions for the numerical radius. Linear Algebra Appl. 2021, 630, 306–315. [Google Scholar] [CrossRef]
- Bhunia, P.; Paul, K. Proper improvement of well-known numerical radius inequalities and their applications. Results Math. 2021, 76, 177. [Google Scholar] [CrossRef]
- Bhunia, P.; Paul, K. New upper bounds for the numerical radius of Hilbert space operators. Bull. Sci. Math. 2021, 167, 102959. [Google Scholar] [CrossRef]
- Kittaneh, F. A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix. Stud. Math. 2003, 158, 11–17. [Google Scholar] [CrossRef]
- Yamazaki, T. On upper and lower bounds for the numerical radius and an equality condition. Stud. Math. 2007, 178, 83–89. [Google Scholar] [CrossRef]
- Hirzallah, O.; Kittaneh, F.; Shebrawi, K. Numerical radius inequalities for certain 2 × 2 operator matrices. Integr. Equ. Oper. Theory 2011, 71, 129–147. [Google Scholar] [CrossRef]
- Kittaneh, F.; Moslehian, M.S.; Yamazaki, T. Cartesian decomposition and numerical radius inequalities. Linear Algebra Appl. 2015, 471, 46–53. [Google Scholar] [CrossRef]
- Bhunia, P.; Paul, K. Some improvements of numerical radius inequalities of operators and operator matrices. Linear Multilinear Algebra 2022, 70, 1995–2013. [Google Scholar] [CrossRef]
- Mitrinović, D.S.; Pečarić, J.E.; Fink, A.M. Classical and New Inequalities in Analysis; Kluwer Academic: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Boas, R.P. A general moment problem. Am. J. Math. 1941, 63, 361–370. [Google Scholar] [CrossRef]
- Bellman, R. Almost orthogonal series. Bull. Am. Math. Soc. 1944, 50, 517–519. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altwaijry, N.; Dragomir, S.S.; Feki, K. Power Bounds for the Numerical Radius of the Off-Diagonal 2 × 2 Operator Matrix. Symmetry 2024, 16, 1199. https://doi.org/10.3390/sym16091199
Altwaijry N, Dragomir SS, Feki K. Power Bounds for the Numerical Radius of the Off-Diagonal 2 × 2 Operator Matrix. Symmetry. 2024; 16(9):1199. https://doi.org/10.3390/sym16091199
Chicago/Turabian StyleAltwaijry, Najla, Silvestru Sever Dragomir, and Kais Feki. 2024. "Power Bounds for the Numerical Radius of the Off-Diagonal 2 × 2 Operator Matrix" Symmetry 16, no. 9: 1199. https://doi.org/10.3390/sym16091199
APA StyleAltwaijry, N., Dragomir, S. S., & Feki, K. (2024). Power Bounds for the Numerical Radius of the Off-Diagonal 2 × 2 Operator Matrix. Symmetry, 16(9), 1199. https://doi.org/10.3390/sym16091199