Group Theoretic Approach towards the Balaban Index of Catacondensed Benzenoid Systems and Linear Chain of Anthracene
Abstract
:1. Introduction
2. Result and Discussion
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, N.; Kousar, Z.; Safdar, M.; Safdar, J.; Tolasa, F.T. A Mathematical Analysis of Concealed Non-Kekulean Benzenoids and Subdivided Networks in Associated Line Graphs. Acadlore Trans. Appl Math. Stat. 2024, 2, 72–80. [Google Scholar] [CrossRef]
- Raza, A.; Tolasa, F.T. Exploring Novel Topological Descriptors: Geometric-Harmonic and Harmonic-Geometric Descriptors for HAC and HAP Conjugates. Acadlore Trans. Appl Math. Stat. 2024, 2, 32–41. [Google Scholar] [CrossRef]
- Balaban, A.T. Highly discriminating distance-based topological index. Chem. Phys. Lett. 1982, 89, 399–404. [Google Scholar] [CrossRef]
- Graovac, A.; Gotman, I.; Trinajstic, N. Topological Approach to the Chemistry of Conjugated Molecules; Springer Science & Business Media: Berlin, Germany, 2012; Volume 4. [Google Scholar]
- Roy, K.; Kar, S.; Das, R.N. A Primer on QSAR/QSPR Modeling: Fundamental Concepts; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Ghasemi, F.; Mehridehnavi, A.; Perez-Garrido, A.; Perez-Sanchez, H. Neural network and deep-learning algorithms used in QSAR studies: Merits and drawbacks. Drug Discov. Today 2018, 23, 1784–1790. [Google Scholar] [CrossRef]
- Shen, J.; Xu, L.; Fang, H.; Richard, A.M.; Bray, J.D.; Judson, R.S.; Zhou, G.; Colatsky, T.J.; Aungst, J.L.; Teng, C.; et al. EADB: An estrogenic activity database for assessing potential endocrine activity. Toxicol. Sci. 2013, 135, 277–291. [Google Scholar] [CrossRef]
- Kerdivel, G.; Habauzit, D.; Pakdel, F. Assessment and molecular actions of endocrine-disrupting chemicals that interfere with estrogen receptor pathways. Int. J. Endocrinol. 2013, 2013, 501851. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, K.; Abdelaziz, A.; Rybacka, A.; Roncaglioni, A.; Tropsha, A.; Varnek, A.; Zakharov, A.; Worth, A.; Richard, A.M.; Grulke, C.M.; et al. CERAPP: Collaborative estrogen receptor activity prediction project. Environ. Health Perspect. 2016, 124, 1023–1033. [Google Scholar] [CrossRef] [PubMed]
- Fransway, A.F.; Fransway, P.J.; Belsito, D.V.; Yiannias, J.A. Paraben toxicology. Dermatitis 2019, 30, 32–45. [Google Scholar] [CrossRef]
- Sun, L. Bounds on the Balaban index of trees. MATCH Commun. Math. Comput. Chem. 2010, 63, 813–818. [Google Scholar]
- Aouchiche, M.; Caporossi, G.; Hansen, P. Refutations, results and conjectures about the Balaban index. Int. J. Chem. Model. 2013, 5, 189. [Google Scholar]
- Fang, W.; Gao, Y.; Shao, Y.; Gao, W.; Jing, G.; Li, Z. Maximum Balaban index and sum-Balaban index of bicyclic graphs. MATCH Commun. Math. Comput. Chem. 2016, 75, 129–156. [Google Scholar]
- Knor, M.; Škrekovski, R.; Tepeh, A. A note on accumulation points of Balaban index. MATCH Commun. Math. Comput. Chem. 2017, 78, 163–168. [Google Scholar]
- Balaban, T.S.; Balaban, A.T.; Bonchev, D. A topological approach to predicting properties of infinite polymers. Part VI. Rational formulas for the normalized Wiener index and a comparison with index J. J. Mol. Struct. THEOCHEM 2001, 535, 81–92. [Google Scholar] [CrossRef]
- Wu, K.; Sukumar, N.; Lanzillo, N.A.; Wang, C.; “Rampi” Ramprasad, R.; Ma, R.; Baldwin, A.F.; Sotzing, G.; Breneman, C. Prediction of polymer properties using infinite chain descriptors (ICD) and machine learning: Toward optimized dielectric polymeric materials. J. Polym. Sci. Part B Polym. Phys. 2016, 54, 2082–2091. [Google Scholar] [CrossRef]
- Knor, M.; Škrekovski, R.; Tepeh, A. Mathematical aspects of Balaban index. MATCH Commun. Math. Comput. Chem. 2018, 79, 685–716. [Google Scholar]
- Naeem, M.; Rauf, A.; Maqbool, S.; Aslam, A. Degree-based topological indices of geranyl and farnesyl penicillin G bioconjugate structure. Eur. Phys. J. Plus 2022, 137, 303. [Google Scholar] [CrossRef]
- Rastija, V.; Medic-Šaric, M. QSAR study of antioPhidant activity of wine polyphenols. Eur. J. Med. Chem. 2009, 44, 400–408. [Google Scholar] [CrossRef]
- Tan, B.L.; Norhaizan, M.E. Scientific evidence of rice by-products for cancer prevention: Chemopreventive properties of waste products from rice milling on carcinogenesis in vitro and in vivo. Biomed Res. Int. 2017, 2017, 9017902. [Google Scholar] [CrossRef] [PubMed]
- Cutrim, C.S.; Cortez, M.A.S. A review on polyphenols: Classification, beneficial effects and their application in dairy products. Int. J. Dairy Technol. 2018, 71, 564–578. [Google Scholar] [CrossRef]
- Spiegel, M.; Kapusta, K.; Kolodziejczyk, W.; Saloni, J.; Zbikowska, B.; Hill, G.A.; Sroka, Z. Antioxidant activity of selected phenolic acids–ferric reducing antioxidant power assay and QSAR analysis of the structural features. Molecules 2020, 25, 3088. [Google Scholar] [CrossRef]
- Wei, X.; Yang, M.; Zhu, Q.; Wagner, E.D.; Plewa, M.J. Comparative quantitative toxicology and QSAR modeling of the haloacetonitriles: Forcing agents of water disinfection byproduct toxicity. Environ. Sci. Technol. 2020, 54, 8909–8918. [Google Scholar] [CrossRef] [PubMed]
- Shukla, A.K.; Wiley, J. (Eds.) Analytical Characterization Methods for Crude Oil and Related Products; John Wiley & Sons Limited: Hoboken, NJ, USA, 2018. [Google Scholar]
- Rakhmatullin, I.; Efimov, S.; Tyurin, V.; Gafurov, M.; Al-Muntaser, A.; Varfolomeev, M.; Klochkov, V. Qualitative and quantitative analysis of heavy crude oil samples and their SARA fractions with 13c nuclear magnetic resonance. Processes 2020, 8, 995. [Google Scholar] [CrossRef]
- Trukhan, S.N.; Yakushkin, S.S.; Martyanov, O.N. Fine-Tuning Simulation of the ESR Spectrum- Sensitive Tool to Identify the Local Environment of Asphaltenes In Situ. J. Phys. Chem. C 2022, 126, 10729–10741. [Google Scholar] [CrossRef]
- Jiang, Z.; Shi, H.; Tang, X.; Qin, J. Recent advances in droplet microfluidics for single-cell analysis. TrAC Trends Anal. Chem. 2023, 159, 116932. [Google Scholar] [CrossRef]
- Liu, K.; Jiang, Z.; Zhao, F.; Wang, W.; Jäkle, F.; Wang, N.; Tang, X.; Yin, X.; Chen, P. Triarylboron-Doped Acenethiophenes as Organic Sonosensitizers for Highly Efficient Sonodynamic Therapy with Low Phototoxicity. Adv. Mater. 2022, 34, 2206594. [Google Scholar] [CrossRef] [PubMed]
- Randic, M. Aromaticity revisited. Adv. Quantum Chem. 2018, 77, 167–199. [Google Scholar]
- Alvarez-Ramírez, F.; Ruiz-Morales, Y. Database of nuclear independent chemical shifts (NICS) versus NICSZZ of polycyclic aromatic hydrocarbons (PAHs). J. Chem. Inf. Model. 2019, 60, 611–620. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, K. Combinatorics of Supergiant Fullerenes: Enumeration of Polysubstituted Isomers, Chirality, Nuclear Magnetic Resonance, Electron Spin Resonance Patterns, and Vibrational Modes from C70 to C150000. J. Phys. Chem. A 2020, 124, 10359–10383. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N. Role of microwaves in the synthesis of fused five-membered heterocycles with three N-heteroatoms. Synth. Commun. 2015, 45, 403–431. [Google Scholar] [CrossRef]
- Kaur, N. Synthesis of six-and seven-membered heterocycles under ultrasound irradiation. Synth. Commun. 2018, 48, 1235–1258. [Google Scholar] [CrossRef]
- Kaur, N. Green synthesis of three-to five-membered O-heterocycles using ionic liquids. Synth. Commun. 2018, 48, 1588–1613. [Google Scholar] [CrossRef]
- Kekulé, A. Sur la constitution des substances aromatiques. Bull. Mens. Société Chim. Paris 1865, 3, 98. [Google Scholar]
- Arockiaraj, M.; Clement, J.; Balasubramanian, K. Topological indices and their applications to circumcised donut benzenoid systems, kekulenes and drugs. Polycycl. Aromat. Compd. 2020, 40, 280–303. [Google Scholar] [CrossRef]
- Andova, V.; Dimitrov, D.; Fink, J.; Škrekovski, R. Bounds on Gutman index. Match-Commun. Math. Comput. Chem. 2012, 67, 515. [Google Scholar]
- Balaban, A.T.; Harary, F. Chemical graphs—V: Enumeration and proposed nomenclature of benzenoid cata-condensed polycyclic aromatic hydrocarbons. Tetrahedron 1968, 24, 2505–2516. [Google Scholar] [CrossRef]
- Haire, B.T.; Heard, K.W.; Little, M.S.; Parry, A.V.; Raftery, J.; Quayle, P.; Yeates, S.G. Non-linear, cata-Condensed, Polycyclic Aromatic Hydrocarbon Materials: A Generic Approach and Physical Properties. Chemistry 2015, 21, 9970. [Google Scholar] [CrossRef] [PubMed]
- Bašić, N.; Estélyi, I.; Škrekovski, R.; Tratnik, N. On the Clar number of benzenoid graphs. arXiv 2017, arXiv:1709.04195. [Google Scholar]
- Hu, B.; Das, P.; Lv, X.; Shi, M.; Aa, J.; Wang, K.; Duan, L.; Gilbert, J.A.; Nie, Y.; Wu, X.L. Effects of ‘healthy’fecal microbiota transplantation against the deterioration of depression in fawn-hooded rats. Msystems 2022, 7, e00218-22. [Google Scholar] [PubMed]
- Wang, Z.; Dai, L.; Yao, J.; Guo, T.; Hrynsphan, D.; Tatsiana, S.; Chen, J. Improvement of Alcaligenes sp. TB performance by Fe-Pd/multi-walled carbon nanotubes: Enriched denitrification pathways and accelerated electron transport. Bioresour. Technol. 2021, 327, 124785. [Google Scholar] [CrossRef] [PubMed]
- Li, C.P.; Zhonglin, C.; Munir, M.; Yasmin, K.; Liu, J.B. Mpolynomials and topological indices of linear chains of benzene, napthalene and anthracene. Math. Biosci. Eng. 2020, 17, 2384–2398. [Google Scholar] [CrossRef]
- Ali, A.; Nazeer, W.; Munir, M.; Kang, S.M. M-polynomials and topological indices of zigzag and rhombic benzenoid systems. Open Chem. 2018, 16, 73–78. [Google Scholar] [CrossRef]
- Ashrafi, A.R.; Shabani, H.; Diudea, M.V. Balaban index of dendrimers. MATCH Commun. Math. Comput. Chem. 2013, 69, 151–158. [Google Scholar]
- Shabani, H.; Ashrafi, A.R.; Diudea, M.V. Balaban index of an infinite class of dendrimers. Croat. Chem. Acta 2010, 83, 439–442. [Google Scholar]
- Wu, R.; Deng, H. The Sum-Balaban Index of a Class of Dendrimers. J. Comput. Theor. Nanosci. 2012, 9, 1667–1669. [Google Scholar] [CrossRef]
- Deore, S.P. Human Behavior Identification Based on Graphology Using Artificial Neural Network. Acadlore Trans. Mach. Learn. 2022, 1, 101–108. [Google Scholar] [CrossRef]
- Sun, Q.B.; Yuan, W.H.; Zhang, Q.; Zhang, Z.J. Enhancing Session-Based Recommendations with Popularity-Aware Graph Neural Networks. Acadlore Trans. Mach. Learn. 2022, 1, 22–29. [Google Scholar] [CrossRef]
- Ozden, H.; Zihni, F.E.; Erdogan, F.O.; Cangul, I.N.; Srivastava, G.; Srivastava, H.M. Independence number of graphs and line graphs of trees by means of omega invariant. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A Mat. 2020, 114, 91. [Google Scholar] [CrossRef]
- Delen, S.; Demirci, M.; Cevik, A.S.; Cangul, I.N. On omega index and average degree of graphs. J. Math. 2021, 2021, 5565146. [Google Scholar] [CrossRef]
- Gunes, A.Y. New Relations Between Zagreb Indices and Omega Invariant. Curr. Org. Synth. 2024, 21, 257–262. [Google Scholar] [CrossRef]
- Yang, M.Z.N.; Sun, Y.G.; Xu, J.Q.; Sun, B. Finite Element Analysis and Electromagnetic Field Optimization of Linear Synchronous Motor in High-Speed Maglev Systems. Mechatron. Intell Transp. Syst. 2023, 2, 117–130. [Google Scholar] [CrossRef]
- Ramanathan, S.; Kanaparthi, T.; Yarrabothu, R.S.; Sundar, R. Enhanced Channel Estimation in Multiple-Input Multiple-Output Systems: A Dual Quadratic Decomposition Algorithm Approach for Interference Cancellation. Inf. Dyn. Appl. 2023, 2, 135–142. [Google Scholar] [CrossRef]
- Shivaji, R.; Ramaswamy, N.K.; Srikantaswamy, M.; Ramaswamy, R.K. An Optimized Algorithm for Peak to Average Power Ratio Reduction in Orthogonal Frequency Division Multiplexing Communication Systems: An Integrated Approach. Inf. Dyn. Appl. 2023, 2, 115–125. [Google Scholar] [CrossRef]
l | J |
---|---|
1.0 | 1.68384 |
5.0 | 1.1285 |
9.0 | 1.0211 |
11 | 1.01312 |
15 | 0.088484 |
19 | 0.87654 |
99 | 0.00612570 |
999 | 0.000193983 |
l | J |
---|---|
2 | 1.4790 |
6 | 1.3797 |
10 | 1.1076 |
14 | 1.0974 |
18 | 0.9269 |
100 | 0.030136 |
1000 | 0.000268172 |
l | J |
---|---|
1 | 2 |
5 | 1.4689 |
12 | 1.1149 |
15 | 0.9952 |
40 | 0.9103 |
80 | 0.0531 |
200 | 0.00823 |
500 | 0.0004317 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaseen, M.; Alkahtani, B.S.; Min, H.; Anjum, M. Group Theoretic Approach towards the Balaban Index of Catacondensed Benzenoid Systems and Linear Chain of Anthracene. Symmetry 2024, 16, 996. https://doi.org/10.3390/sym16080996
Yaseen M, Alkahtani BS, Min H, Anjum M. Group Theoretic Approach towards the Balaban Index of Catacondensed Benzenoid Systems and Linear Chain of Anthracene. Symmetry. 2024; 16(8):996. https://doi.org/10.3390/sym16080996
Chicago/Turabian StyleYaseen, Muhammad, Badr S. Alkahtani, Hong Min, and Mohd Anjum. 2024. "Group Theoretic Approach towards the Balaban Index of Catacondensed Benzenoid Systems and Linear Chain of Anthracene" Symmetry 16, no. 8: 996. https://doi.org/10.3390/sym16080996
APA StyleYaseen, M., Alkahtani, B. S., Min, H., & Anjum, M. (2024). Group Theoretic Approach towards the Balaban Index of Catacondensed Benzenoid Systems and Linear Chain of Anthracene. Symmetry, 16(8), 996. https://doi.org/10.3390/sym16080996