Variance Estimation under Some Transformation for Both Symmetric and Asymmetric Data
Abstract
:1. Introduction
2. Concepts and Notations
3. Proposed Estimator
Properties of the Proposed Estimator
4. Mathematical Comparison
5. Numerical Comparison
5.1. Simulation Study
- Population 1:
- Population 2: ,
- Population 3:
- Population 4:
- Population 5:
- Population 6:
- Step 1: A population of 1000 observations is initially generated by employing the above probability distributions.
- Step 2: We obtain the population total from Step 1 along with the smallest and largest values of the supplementary variable.
- Step 3: We use SRSWOR to obtain different sizes of samples for each population.
- Step 4: For each sample size, calculate the values of all the estimators discussed in this article.
5.2. Numerical Examples
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Numerical Examples
Appendix B. Simulation Study
References
- Mohanty, S.; Sahoo, J. A note on improving the ratio method of estimation through linear transformation using certain known population parameters. Sankhyā Indian J. Stat. Ser. 1995, 57, 93–102. [Google Scholar]
- Khan, M.; Shabbir, J. Some improved ratio, product, and regression estimators of finite population mean when using minimum and maximum values. Sci. World J. 2013, 2013, 431868. [Google Scholar] [CrossRef] [PubMed]
- Daraz, U.; Shabbir, J.; Khan, H. Estimation of finite population mean by using minimum and maximum values in stratified random sampling. J. Mod. Appl. Stat. Methods 2018, 17, 20. [Google Scholar] [CrossRef]
- Cekim, H.O.; Cingi, H. Some estimator types for population mean using linear transformation with the help of the minimum and maximum values of the auxiliary variable. Hacet. J. Math. Stat. 2017, 46, 685–694. [Google Scholar]
- Chatterjee, S.; Hadi, A.S. Regression Analysis by Example; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Khan, M. Improvement in estimating the finite population mean under maximum and minimum values in double sampling scheme. J. Stat. Appl. Probab. Lett. 2015, 2, 115–121. [Google Scholar]
- Walia, G.S.; Kaur, H.; Sharma, M. Ratio type estimator of population mean through efficient linear transformation. Am. J. Math. Stat. 2015, 5, 144–149. [Google Scholar]
- Isaki, C.T. Variance estimation using auxiliary information. J. Am. Stat. Assoc. 1983, 78, 117–123. [Google Scholar] [CrossRef]
- Bahl, S.; Tuteja, R. Ratio and product type exponential estimators. J. Inf. Optim. Sci. 1991, 12, 159–164. [Google Scholar] [CrossRef]
- Daraz, U.; Khan, M. Estimation of variance of the difference-cum-ratio-type exponential estimator in simple random sampling. Res. Math. Stat. 2021, 8, 1899402. [Google Scholar] [CrossRef]
- Daraz, U.; Wu, J.; Albalawi, O. Double exponential ratio estimator of a finite population variance under extreme values in simple random sampling. Mathematics 2024, 12, 1737. [Google Scholar] [CrossRef]
- Daraz, U.; Wu, J.; Alomair, M.A.; Aldoghan, L.A. New classes of difference cum-ratio-type exponential estimators for a finite population variance in stratified random sampling. Heliyon 2024, 10, e33402. [Google Scholar] [CrossRef]
- Ahmad, S.; Al Mutairi, A.; Nassr, S.G.; Alsuhabi, H.; Kamal, M.; Rehman, M.U. A new approach for estimating variance of a population employing information obtained from a stratified random sampling. Heliyon 2023, 9, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Dubey, V.; Sharma, H. On estimating population variance using auxiliary information. Stat. Transit. New Ser. 2008, 9, 7–18. [Google Scholar]
- Kadilar, C.; Cingi, H. Ratio estimators for the population variance in simple and stratified random sampling. Appl. Math. Comput. 2006, 173, 1047–1059. [Google Scholar] [CrossRef]
- Shabbir, J.; Gupta, S. Some estimators of finite population variance of stratified sample mean. Commun. Stat. Theory Methods 2010, 39, 3001–3008. [Google Scholar] [CrossRef]
- Shabbir, J.; Gupta, S. Using rank of the auxiliary variable in estimating variance of the stratified sample mean. Int. J. Comput. Theor. Stat. 2019, 6, 207. [Google Scholar] [CrossRef]
- Singh, H.; Chandra, P. An alternative to ratio estimator of the population variance in sample surveys. J. Transp. Stat. 2008, 9, 89–103. [Google Scholar]
- Singh, H.P.; Solanki, R.S. A new procedure for variance estimation in simple random sampling using auxiliary information. J. Stat. Pap. 2013, 54, 479–497. [Google Scholar] [CrossRef]
- Upadhyaya, L.; Singh, H. An estimator for populationvariance that utilizes the kurtosis of an auxiliary variablein sample surveys. Vikram Math. J. 1999, 19, 14–17. [Google Scholar]
- Yadav, S.K.; Kadilar, C.; Shabbir, J.; Gupta, S. Improved family of estimators of population variance in simple random sampling. J. Stat. Theory Pract. 2015, 9, 219–226. [Google Scholar] [CrossRef]
- Yasmeen, U.; Noor-ul-Amin, M. Estimation of Finite Population Variance Under Stratified Sampling Technique. J. Reliab. Stat. Stud. 2021, 14, 565–584. [Google Scholar] [CrossRef]
- Zaman, T.; Bulut, H. An efficient family of robust-type estimators for the population variance in simple and stratified random sampling. Commun. Stat. Theory Methods 2023, 52, 2610–2624. [Google Scholar] [CrossRef]
- Watson, D.J. The estimation of leaf area in field crops. J. Agric. Sci. 1937, 27, 474–483. [Google Scholar] [CrossRef]
- Bureau of Statistics. Punjab Development Statistics Government of the Punjab, Lahore, Pakistan; Bureau of Statistics: Lahore, Pakistan, 2013.
- Cochran, W.B. Sampling Techniques; John Wiley and Sons: Hoboken, NJ, USA, 1963. [Google Scholar]
Subsets of the Proposed Estimator | ||
---|---|---|
1 | ||
1 | ||
Estimator | Pop-I | Pop-II | Pop-III | Pop-IV | Pop-V | Pop-VI |
---|---|---|---|---|---|---|
(1) | 7.34e−5 | 9.62e−5 | 8.82e−4 | 6.43e−4 | 7.47e−3 | 6.00e−3 |
(2) | 5.98e−5 | 7.90e−5 | 5.90e−4 | 4.99e−4 | 6.00e−3 | 5.02e−3 |
(3) | 5.90e−5 | 7.88e−5 | 5.89e−4 | 4.80e−4 | 5.60e−3 | 4.80e−3 |
(4) | 5.31e−5 | 7.60e−5 | 5.80e−4 | 4.65e−4 | 5.40e−3 | 4.70e−3 |
(5) | 5.32e−5 | 7.58e−5 | 5.78e−4 | 4.50e−4 | 5.20e−3 | 4.50e−3 |
(6) | 5.30e−5 | 7.40e−5 | 5.76e−4 | 4.20e−4 | 5.00e−3 | 4.30e−3 |
(7) | 5.30e−5 | 7.40e−5 | 5.76e−4 | 4.20e−4 | 5.00e−3 | 4.30e−3 |
(8) | 5.20e−5 | 7.35e−5 | 5.60e−4 | 4.00e−4 | 4.90e−3 | 4.10e−3 |
(9) | 2.69e−5 | 5.78e−5 | 3.80e−4 | 2.80e−4 | 2.77e−3 | 2.00e−3 |
(10) | 2.98e−5 | 5.92e−5 | 3.98e−4 | 3.00e−4 | 2.96e−3 | 2.20e−3 |
(11) | 2.39e−5 | 5.39e−5 | 3.50e−4 | 2.50e−4 | 2.60e−3 | 2.10e−3 |
(12) | 2.380e−5 | 5.35e−5 | 3.35e−4 | 2.20e−4 | 2.40e−3 | 1.90e−3 |
(13) | 2.50e−5 | 5.60e−5 | 3.60e−4 | 2.70e−4 | 2.80e−3 | 1.70e−3 |
(14) | 2.50e−5 | 5.61e−5 | 3.66e−4 | 2.77e−4 | 3.00e−3 | 2.15e−3 |
(15) | 2.40e−5 | 5.25e−5 | 3.20e−4 | 2.10e−4 | 2.35e−3 | 2.40e−3 |
(16) | 2.30e−5 | 5.22e−5 | 3.05e−4 | 1.90e−4 | 1.99e−3 | 1.40e−3 |
Estimator | Pop-I | Pop-II | Pop-III | Pop-IV | Pop-V | Pop-VI |
---|---|---|---|---|---|---|
(1) | 100 | 100 | 100 | 100 | 100 | 100 |
(2) | 122.74 | 125.57 | 149.49 | 128.86 | 124.50 | 119.52 |
(3) | 124.41 | 125.88 | 149.74 | 133.95 | 133.39 | 125.00 |
(4) | 138.23 | 130.52 | 152.07 | 138.28 | 138.33 | 127.66 |
(5) | 137.97 | 130.87 | 52.50 | 142.89 | 143.65 | 133.33 |
(6) | 138.49 | 134.05 | 153.13 | 153.09 | 149.00 | 139.53 |
(7) | 138.49 | 134.05 | 153,13 | 153.00 | 149.00 | 139.53 |
(8) | 141.15 | 134.97 | 157.50 | 60.75 | 152.45 | 146.34 |
(9) | 272.05 | 71.63 | 232.1 | 229.64 | 269.68 | 300.00 |
(10) | 246.31 | 167.57 | 221.61 | 214.33 | 252.36 | 272.73 |
(11) | 307.11 | 184.04 | 252.00 | 257.20 | 287.11 | 285.71 |
(12) | 308.40 | 185.42 | 263.28 | 292.28 | 311.25 | 315.79 |
(13) | 293.60 | 177.14 | 245.00 | 238.15 | 266.79 | 352.94 |
(14) | 293.60 | 176.82 | 240.98 | 232.13 | 249.00 | 279.07 |
(15) | 305.83 | 188.85 | 275.63 | 306.19 | 317.87 | 250.00 |
(16) | 319.13 | 189.74 | 289.18 | 337.53 | 375.38 | 428.57 |
Estimator | Data 1 | Data 2 | Data 3 |
---|---|---|---|
(1) | 1.45e+23 | 9.27e+22 | 8130.61 |
(2) | 9.07.e+22 | 8.67e+22 | 7487.31 |
(3) | 6.36e+22 | 4.65e+22 | 6851.91 |
(4) | 6.72e+22 | 4.66e+22 | 6879.75 |
(5) | 8.67e+22 | 8.33e+22 | 7407.67 |
(6) | 9.07e+22 | 8.67e+22 | 7483.48 |
(7) | 9.07e+22 | 8.67e+22 | 7486.06 |
(8) | 8.13e+22 | 8.41e+22 | 7080.74 |
(9) | 4.22e+22 | 3.81e+22 | 6658.82 |
(10) | 4.25e+22 | 3.84e+22 | 6726.29 |
(11) | 4.25e+22 | 3.84e+22 | 6726.18 |
(12) | 4.25e+22 | 3.84e+22 | 6725.93 |
(13) | 4.25e+22 | 3.84e+22 | 6686.33 |
(14) | 4.25e+22 | 3.84e+22 | 6726.27 |
(15) | 4.17e+22 | 3.82e+22 | 6831.87 |
(16) | 4.15e+22 | 3.80e+22 | 6631.44 |
Estimator | Data 1 | Data 2 | Data 3 |
---|---|---|---|
(1) | 100 | 100 | 100 |
(2) | 159.32 | 106.92 | 108.59 |
(3) | 227.25 | 199.09 | 118.66 |
(4) | 215.92 | 198.86 | 118.18 |
(5) | 166.89 | 111.34 | 109.75 |
(6) | 159.32 | 106.92 | 108.65 |
(7) | 159.32 | 106.92 | 108.61 |
(8) | 177.80 | 110.22 | 114.79 |
(9) | 342.83 | 243.29 | 122.10 |
(10) | 340.27 | 241.54 | 120.87 |
(11) | 340.27 | 241.55 | 120.88 |
(12) | 340.28 | 241.55 | 120.88 |
(13) | 340.27 | 241.55 | 121.60 |
(14) | 340.27 | 241.54 | 120.88 |
(15) | 346.72 | 242.85 | 119.01 |
(16) | 348.52 | 244.05 | 122.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daraz, U.; Alomair, M.A.; Albalawi, O. Variance Estimation under Some Transformation for Both Symmetric and Asymmetric Data. Symmetry 2024, 16, 957. https://doi.org/10.3390/sym16080957
Daraz U, Alomair MA, Albalawi O. Variance Estimation under Some Transformation for Both Symmetric and Asymmetric Data. Symmetry. 2024; 16(8):957. https://doi.org/10.3390/sym16080957
Chicago/Turabian StyleDaraz, Umer, Mohammed Ahmed Alomair, and Olayan Albalawi. 2024. "Variance Estimation under Some Transformation for Both Symmetric and Asymmetric Data" Symmetry 16, no. 8: 957. https://doi.org/10.3390/sym16080957
APA StyleDaraz, U., Alomair, M. A., & Albalawi, O. (2024). Variance Estimation under Some Transformation for Both Symmetric and Asymmetric Data. Symmetry, 16(8), 957. https://doi.org/10.3390/sym16080957