Kantowski–Sachs Spherically Symmetric Solutions in Teleparallel F(T) Gravity
Abstract
:1. Introduction
2. Teleparallel Spherically Symmetric Spacetimes and Field Equations
2.1. Summary of Teleparallel Field Equations
2.2. Spherically Symmetric Teleparallel Kantowski–Sachs Geometry
2.3. Teleparallel Kantowski–Sachs Field Equations
3. Vacuum Solutions
3.1. Power-Law Solutions
3.2. Solutions
- Limit of : If , we obtain that Equation (30) simplifies as follows:
3.3. Exponential Ansatz Solutions
- case: We obtain from Equation (33a–c) that constant, constant, , and .
- : Equation (33b) leads to , then constant and (i.e., ), leading to for a t-independent solution. Then, Equation (33a) leads to constant, and finally Equation (33c) leads to .
4. Linear Perfect Fluid Solutions
4.1. Power-Law Solutions
4.2. Ansatz Solutions
- case: Equation (58) becomes as simple as and , and Equation (55e) leads to . Equations (61) and (62) become:By putting Equation (63a,b) together, we find as DE and as the solution:
- case: Equation (58) becomes , and Equation (55e) leads to constant. Then Equations (61) and (62) become:
- (a)
- (b)
- case: Equation (58) becomes and , and Equation (55e) leads to . Then, Equations (61) and (62) become:
- (a)
- Low fluid density limit : In this situation, Equation (70) will be approximated at the 1st order level:
- (b)
- High fluid density limit (or ): In this last case, Equation (70) will be approximated as:
4.3. Exponential Ansatz Solutions
5. Non-Linear Perfect Fluid Solutions
5.1. Power-Law Solutions
5.2. Ansatz Solutions
- general case: Equation (110) simplifies and the solution is:
- : We set for studying solutions around (where ). Then, Equation (110) becomes:If and , we obtain a GR solution. For an independent solution, we need to satisfy , where , and then Equation (112) becomes:We find at Equation (113) a finite limit of valid for large n. If there is a singularity at , the solution is well-defined close to this point.
- Then, by putting Equations (115) and (116) together for , we find the DE to solve for :
- (a)
- (low density limit): Equation (117) will be approximated as:
- : Equation (118) will be approximated as:
- –
- and : .
- –
- and : .
With going to infinity, this solution leads to an unstable universe. - : Equation (118) will be simplified as:
- –
- : .
- –
- : .
With going to infinity, this solution leads to an unstable universe.
- (b)
- (high density limit): Equation (117) will be approximated as:
- : .
- : .
The solution is bounded by two linear functions of t as:
- : Equation (114) becomes, in this case:
- (a)
- (b)
- (high density limit): Equation (124) will be approximated as:
- Expanding: and or and .
- Contracting: and or and .
5.3. Exponential Ansatz Solutions
- (general case): We can solve Equation (132a) for and 4. However, the and 4 cases are complex to solve, and we will restrict ourselves to subcase. Then, Equation (132a) becomes, in this case:
6. Discussion and Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AL | Alexandre Landry |
DE | Differential Equation |
EoS | Equation of State |
FE | Field Equation |
GR | General Relativity |
KV | Killing Vector |
NGR | New General Relativity |
TEGR | Teleparallel Equivalent of General Relativity |
References
- Aldrovandi, R.; Pereira, J.G. Teleparallel Gravity, An Introduction; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Bahamonde, S.; Dialektopoulos, K.; Escamilla-Rivera, C.; Farrugia, G.; Gakis, V.; Hendry, M.; Hohmann, M.; Said, J.L.; Mifsud, J.; Di Valentino, E. Teleparallel Gravity: From Theory to Cosmology. Rep. Prog. Phys. 2023, 86, 026901. [Google Scholar] [CrossRef] [PubMed]
- Krssak, M.; van den Hoogen, R.; Pereira, J.; Boehmer, C.; Coley, A. Teleparallel Theories of Gravity: Illuminating a Fully Invariant Approach. Class. Quantum Gravity 2019, 36, 183001. [Google Scholar] [CrossRef]
- Chinea, F. Symmetries in tetrad theories. Class. Quantum Gravity 1988, 5, 135. [Google Scholar] [CrossRef]
- Estabrook, F.; Wahlquist, H. Moving frame formulations of 4-geometries having isometries. Class. Quantum Gravity 1996, 13, 1333. [Google Scholar] [CrossRef]
- Papadopoulos, G.; Grammenos, T. Locally homogeneous spaces, induced Killing vector fields and applications to Bianchi prototypes. J. Math. Phys. 2012, 53, 072502. [Google Scholar] [CrossRef]
- McNutt, D.D.; Coley, A.A.; van den Hoogen, R.J. A frame based approach to computing symmetries with non-trivial isotropy groups. J. Math. Phys. 2023, 64, 032503. [Google Scholar] [CrossRef]
- Olver, P. Equivalence, Invariants and Symmetry; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Ferraro, R.; Fiorini, F. Modified teleparallel gravity: Inflation without an inflation. Phys. Rev. D 2007, 75, 084031. [Google Scholar] [CrossRef]
- Ferraro, R.; Fiorini, F. On Born-Infeld Gravity in Weitzenbock spacetime. Phys. Rev. D 2008, 78, 124019. [Google Scholar] [CrossRef]
- Linder, E. Einstein’s Other Gravity and the Acceleration of the Universe. Phys. Rev. D 2010, 81, 127301, Erratum in Phys. Rev. D 2010, 82, 109902. [Google Scholar] [CrossRef]
- Lucas, T.G.; Obukhov, Y.; Pereira, J.G. Regularizing role of teleparallelism. Phys. Rev. D 2009, 80, 064043. [Google Scholar] [CrossRef]
- Krssak, M.; Pereira, J.G. Spin Connection and Renormalization of Teleparallel Action. Eur. Phys. J. C 2015, 75, 519. [Google Scholar] [CrossRef]
- Hayashi, K.; Shirafuji, T. New general relativity. Phys. Rev. D 1979, 19, 3524. [Google Scholar] [CrossRef]
- Jimenez, J.B.; Dialektopoulos, K.F. Non-Linear Obstructions for Consistent New General Relativity. J. Cosmol. Astropart. Phys. 2020, 1, 18. [Google Scholar] [CrossRef]
- Bahamonde, S.; Blixt, D.; Dialektopoulos, K.F.; Hell, A. Revisiting Stability in New General Relativity. arXiv 2024, arXiv:2404.02972. [Google Scholar]
- Heisenberg, L. Review on f(Q) Gravity. arXiv 2023, arXiv:2309.15958. [Google Scholar] [CrossRef]
- Heisenberg, L.; Hohmann, M.; Kuhn, S. Cosmological teleparallel perturbations. arXiv 2023, arXiv:2311.05495. [Google Scholar] [CrossRef]
- Flathmann, K.; Hohmann, M. Parametrized post-Newtonian limit of generalized scalar-nonmetricity theories of gravity. Phys. Rev. D 2022, 105, 044002. [Google Scholar] [CrossRef]
- Hohmann, M. General covariant symmetric teleparallel cosmology. Phys. Rev. D 2021, 104, 124077. [Google Scholar] [CrossRef]
- Jimenez, J.B.; Heisenberg, L.; Koivisto, T.S. The Geometrical Trinity of Gravity. Universe 2019, 5, 173. [Google Scholar] [CrossRef]
- Nakayama, Y. Geometrical trinity of unimodular gravity. Class. Quantum Gravity 2023, 40, 125005. [Google Scholar] [CrossRef]
- Xu, Y.; Li, G.; Harko, T.; Liang, S.-D. f(Q,T) gravity. Eur. Phys. J. C 2019, 79, 708. [Google Scholar] [CrossRef]
- Maurya, D.C.; Yesmakhanova, K.; Myrzakulov, R.; Nugmanova, G. Myrzakulov, F(T,Q) gravity: Cosmological implications and constraints. arXiv 2024, arXiv:2404.09698. [Google Scholar]
- Maurya, D.C.; Yesmakhanova, K.; Myrzakulov, R.; Nugmanova, G. Myrzakulov, FLRW Cosmology in Myrzakulov F(R,Q) Gravity. arXiv 2024, arXiv:2403.11604. [Google Scholar]
- Maurya, D.C.; Myrzakulov, R. Exact Cosmology in Myrzakulov Gravity. arXiv 2024, arXiv:2402.02123. [Google Scholar]
- Harko, T.; Lobo, F.S.N.; Nojiri, S.; Odintsov, S.D. f(R,T) gravity. Phys. Rev. D 2011, 84, 024020. [Google Scholar] [CrossRef]
- Golovnev, A.; Guzman, M.-J. Approaches to spherically symmetric solutions in f(T)-gravity. Universe 2021, 7, 121. [Google Scholar] [CrossRef]
- Golovnev, A. Issues of Lorentz-invariance in f(T)-gravity and calculations for spherically symmetric solutions. Class. Quantum Gravity 2021, 38, 197001. [Google Scholar] [CrossRef]
- Golovnev, A.; Guzman, M.-J. Bianchi identities in f(T)-gravity: Paving the way to confrontation with astrophysics. Phys. Lett. B 2020, 810, 135806. [Google Scholar] [CrossRef]
- DeBenedictis, A.; Ilijić, S.; Sossich, M. On spherically symmetric vacuum solutions and horizons in covariant f(T) gravity theory. Phys. Rev. D 2022, 105, 084020. [Google Scholar] [CrossRef]
- Coley, A.A.; Landry, A.; van den Hoogen, R.J.; McNutt, D.D. Spherically symmetric teleparallel geometries. Eur. Phys. J. C 2024, 84, 334. [Google Scholar] [CrossRef]
- Coley, A.A.; Landry, A.; van den Hoogen, R.J.; McNutt, D.D. Generalized Teleparallel de Sitter geometries. Eur. Phys. J. C 2023, 83, 977. [Google Scholar] [CrossRef]
- Bahamonde, S.; Camci, U. Exact Spherically Symmetric Solutions in Modified Teleparallel gravity. Symmetry 2019, 11, 1462. [Google Scholar] [CrossRef]
- Awad, A.; Golovnev, A.; Guzman, M.-J.; El Hanafy, W. Revisiting diagonal tetrads: New Black Hole solutions in f(T)-gravity. Eur. Phys. J. C 2022, 82, 972. [Google Scholar] [CrossRef]
- Bahamonde, S.; Golovnev, A.; Guzmán, M.-J.; Said, J.L.; Pfeifer, C. Black Holes in f(T,B) Gravity: Exact and Perturbed Solutions. J. Cosmol. Astropart. Phys. 2022, 1, 037. [Google Scholar] [CrossRef]
- Bahamonde, S.; Faraji, S.; Hackmann, E.; Pfeifer, C. Thick accretion disk configurations in the Born-Infeld teleparallel gravity. Phys. Rev. D 2022, 106, 084046. [Google Scholar] [CrossRef]
- Nashed, G.G.L. Quadratic and cubic spherically symmetric black holes in the modified teleparallel equivalent of general relativity: Energy and thermodynamics. Class. Quantum Gravity 2021, 38, 125004. [Google Scholar] [CrossRef]
- Pfeifer, C.; Schuster, S. Static spherically symmetric black holes in weak f(T)-gravity. Universe 2021, 7, 153. [Google Scholar] [CrossRef]
- El Hanafy, W.; Nashed, G.G.L. Exact Teleparallel Gravity of Binary Black Holes. Astrophys. Space Sci. 2016, 361, 68. [Google Scholar] [CrossRef]
- Aftergood, J.; DeBenedictis, A. Matter Conditions for Regular Black Holes in f(T) Gravity. Phys. Rev. D 2014, 90, 124006. [Google Scholar] [CrossRef]
- Bahamonde, S.; Doneva, D.D.; Ducobu, L.; Pfeifer, C.; Yazadjiev, S.S. Spontaneous Scalarization of Black Holes in Gauss-Bonnet Teleparallel Gravity. Phys. Rev. D 2023, 107, 104013. [Google Scholar] [CrossRef]
- Bahamonde, S.; Ducobu, L.; Pfeifer, C. Scalarized Black Holes in Teleparallel Gravity. J. Cosmol. Astropart. Phys. 2022, 04, 018. [Google Scholar] [CrossRef]
- Calza, M.; Sebastiani, L. A class of static spherically symmetric solutions in f(T)-gravity. Eur. Phys. J. C 2024, 84, 476. [Google Scholar] [CrossRef]
- Landry, A. Static spherically symmetric perfect fluid solutions in teleparallel F(T) gravity. Axioms 2024, 13, 333. [Google Scholar] [CrossRef]
- Leon, G.; Roque, A.A. Qualitative analysis of Kantowski-Sachs metric in a generic class of f(R) models. J. Cosmol. Astropart. Phys. 2014, 05, 032. [Google Scholar] [CrossRef]
- Shaikh, A.A.; Chakraborty, D. Curvature properties of Kantowski-Sachs metric. J. Geom. Phys. 2021, 160, 103970. [Google Scholar] [CrossRef]
- Oliveira-Neto, G.; Canedo, D.L.; Monerat, G.A. An anisotropic Kantowski-Sachs universe with radiation, dust and a phantom fluid. Braz. J. Phys. 2022, 52, 130. [Google Scholar] [CrossRef]
- Rodrigues, M.E.; Kpadonou, A.V.; Rahaman, F.; Oliveira, P.J.; Houndjo, M.J.S. Bianchi type-I, type-III and Kantowski-Sachs solutions in f(T) gravity. Astrophys. Space Sci. 2015, 357, 129. [Google Scholar] [CrossRef]
- Amir, M.J.; Yussouf, M. Kantowski-Sachs Universe Models in f(T) Theory of Gravity. Int. J. Theor. Phys. 2015, 54, 2798. [Google Scholar] [CrossRef]
- Leon, G.; Paliathanasis, A. Anisotropic spacetimes in f(T,B) theory II: Kantowski-Sachs Universe. Eur. Phys. J. Plus 2022, 137, 855. [Google Scholar] [CrossRef]
- Leon, G.; Paliathanasis, A. Anisotropic spacetimes in f(T,B) theory III: LRS Bianchi III Universe. Eur. Phys. J. Plus 2022, 137, 927. [Google Scholar] [CrossRef]
- Vinutha, T.; Niharika, K.; Kavya, K.S. The Study of Kantowski-Sachs Perfect Fluid Cosmological Model in Modified Gravity. Astrophysics 2023, 66, 64. [Google Scholar] [CrossRef]
- Samanta, G.C. Kantowski-Sachs Universe Filled with Perfect Fluid in f(R,T) Theory of Gravity. Int. J. Theor. Phys. 2013, 52, 2647. [Google Scholar] [CrossRef]
- Dimakis, N.; Roumeliotis, M.; Paliathanasis, A.; Christodoulakis, T. Anisotropic Solutions in Symmetric Teleparallel f(Q)-theory: Kantowski-Sachs and Bianchi III LRS Cosmologies. Eur. Phys. J. C 2023, 83, 794. [Google Scholar] [CrossRef]
- Millano, A.D.; Dialektopoulos, K.; Dimakis, N.; Giacomini, A.; Shababi, H.; Halder, A.; Paliathanasis, A. Kantowski-Sachs and Bianchi III dynamics in f(Q)-gravity. Phys. Rev. D 2024, 109, 124044. [Google Scholar] [CrossRef]
- Paliathanasis, A. Classical and Quantum Cosmological Solutions in Teleparallel Dark Energy with Anisotropic Background Geometry. Symmetry 2022, 14, 1974. [Google Scholar] [CrossRef]
- Paliathanasis, A. Kantowski-Sachs cosmology in scalar-torsion theory. Eur. Phys. J. C 2023, 83, 213. [Google Scholar] [CrossRef]
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Coley, A.A. Dynamical Systems and Cosmology; Kluwer Academic: Dordrecht, The Netherlands, 2003. [Google Scholar]
- Zlatev, I.; Wang, L.; Steinhardt, P. Quintessence, Cosmic Coincidence, and the Cosmological Constant. Phys. Rev. Lett. 1999, 82, 896. [Google Scholar] [CrossRef]
- Steinhardt, P.; Wang, L.; Zlatev, I. Cosmological tracking solutions. Phys. Rev. D 1999, 59, 123504. [Google Scholar] [CrossRef]
- Caldwell, R.R. A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Phys. Lett. B 2002, 545, 23. [Google Scholar] [CrossRef]
- Farnes, J.S. A Unifying Theory of Dark Energy and Dark Matter: Negative Masses and Matter Creation within a Modified ΛCDM Framework. Astron. Astrophys. 2018, 620, A92. [Google Scholar] [CrossRef]
- Baum, L.; Frampton, P.H. Turnaround in Cyclic Cosmology. Phys. Rev. Lett. 2007, 98, 071301. [Google Scholar] [CrossRef] [PubMed]
- Duchaniya, L.K.; Gandhi, K.; Mishra, B. Attractor behavior of f(T) modified gravity and the cosmic acceleration. Phys. Dark Universe 2024, 44, 101464. [Google Scholar] [CrossRef]
- Kofinas, G.; Leon, G.; Saridakis, E.N. Dynamical behavior in f(T,TG) cosmology. Class. Quantum Gravity 2014, 31, 175011. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Landry, A. Kantowski–Sachs Spherically Symmetric Solutions in Teleparallel F(T) Gravity. Symmetry 2024, 16, 953. https://doi.org/10.3390/sym16080953
Landry A. Kantowski–Sachs Spherically Symmetric Solutions in Teleparallel F(T) Gravity. Symmetry. 2024; 16(8):953. https://doi.org/10.3390/sym16080953
Chicago/Turabian StyleLandry, Alexandre. 2024. "Kantowski–Sachs Spherically Symmetric Solutions in Teleparallel F(T) Gravity" Symmetry 16, no. 8: 953. https://doi.org/10.3390/sym16080953
APA StyleLandry, A. (2024). Kantowski–Sachs Spherically Symmetric Solutions in Teleparallel F(T) Gravity. Symmetry, 16(8), 953. https://doi.org/10.3390/sym16080953