Novel Uncertainty Principles Related to Quaternion Linear Canonical S-Transform
Abstract
:1. Introduction
2. Preliminaries
2.1. Quaternion Algebra
2.2. Two-Sided Quaternion Fourier Transform
3. Quaternion Linear Canonical Transform (QLCT)
4. Quaternion Linear Canonical S-Transform and Uncertainty Principles
4.1. Heisenberg-Type Uncertainty Principle for QLCST
4.2. Pitt’S Inequality for QLCST
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bahri, M.; Ashino, R. Uncertainty principles related to quaternionic windowed Fourier transform. Int. J. Wavelets Multiresolut. Inf. 2020, 18, 2050015. [Google Scholar] [CrossRef]
- Gao, W.B.; Li, B.Z. Quaternion windowed linear canonical transform of two-dimensional signals. Adv. Appl. Clifford Algebr. 2020, 30, 16. [Google Scholar] [CrossRef]
- Gao, W.B.; Li, B.Z. Uncertainty Principle for the two-sided quaternion windowed linear canonical transform. Circuits Syst. Signal Process. 2021, 41, 1324–1348. [Google Scholar] [CrossRef]
- Kamel, B.; Tefjeni, E. Uncertainty principle for the two-sided quaternion windowed Fourier transform. Integral Transform. Spec. Funct. 2019, 30, 362–382. [Google Scholar] [CrossRef]
- Shah, F.A.; Tantary, A.Y. Quaternionic shearlet transform. Optik 2018, 175, 115–125. [Google Scholar] [CrossRef]
- Shah, F.A.; Teali, A.A.; Tantary, A.Y. Linear canonical wavelet transform in quaternion domains. Adv. Appl. Clifford Algebr. 2021, 31, 42. [Google Scholar] [CrossRef]
- Bahri, M. On two-dimensional quaternion Wigner-Ville distribution. J. Apply. Math. 2014, 2014, 139471. [Google Scholar] [CrossRef]
- Bahri, M.; Saleh, M. Relation between Quaternion Fourier transform and quaternion Wigner-Ville distribution associated with linear canonical transform. J. Appl. Math. 2017, 2017, 3247364. [Google Scholar] [CrossRef]
- Sembe, I.A.; Bahri, M.; Bahtiar, N.; Zakir, M. Inequalities pertaining to quaternion ambiguity function. Adv. Appl. Clifford Algebr. 2024, 34, 15. [Google Scholar] [CrossRef]
- Xin, M.C.; Li, B.Z. On new Wigner-Ville distribution associated with linear canonical transform. EURASIP J. Adv. Signal Process. 2021, 2021, 56. [Google Scholar] [CrossRef]
- Wei, D.Y.; Li, Y.M. Linear canonical Wigner-Ville distribution and its application. Optik 2014, 125, 89–92. [Google Scholar] [CrossRef]
- Zhang, Z.C. The optimal linear canonical Wigner distribution of noisy linear frequency-modulated signals. IEEE Signal Process. Lett. 2009, 26, 1127–1131. [Google Scholar] [CrossRef]
- Shah, F.A.; Tantary, A.Y. Linear canonical Stockwell transform. J. Math. Anal. Appl. 2020, 484, 123673. [Google Scholar] [CrossRef]
- Bahri, M.; Toaha, S.; Lande, C. A generalized S-transform in linear canonical transform. J. Phys.Conf. 2019, 341, 062005. [Google Scholar] [CrossRef]
- Bhat, M.Y.; Dar, A.H. Multiresolution analysis for linear canonical S transform. Adv. Oper. Theory 2021, 6, 68. [Google Scholar] [CrossRef]
- Bhat, M.Y.; Dar, A.H. Quaternion linear canonical S-transform and associated uncertainty principles. Int. J. Wavelets Multiresolut. Inf. 2023, 21, 2250035. [Google Scholar] [CrossRef]
- Bülow, T. Hypercomplex Spectral Signal Representations for the Processing and Analysis of Images. Ph.D. Thesis, University of Kiel, Kiel, Germany, 1999. [Google Scholar]
- Chen, L.P.; Kou, K.I.; Liu, M.S. Pitt’s inequality and the uncertainty principle associated with the quaternion Fourier transform. J. Math. Anal. Appl. 2015, 423, 681–700. [Google Scholar] [CrossRef]
- Hitzer, E. Quaternion Fourier transform on quaternion fields and generalizations. Adv. Appl. Clifford Algebr. 2007, 20, 497–517. [Google Scholar] [CrossRef]
- Lian, P. Uncertainty principle for the quaternion Fourier transform. J. Math. Anal. Appl. 2018, 467, 1258–1269. [Google Scholar] [CrossRef]
- Lian, P. Sharp Hausdorff-Young inequalities for the quaternion Fourier transforms. Proc. Am. Math. Soc. 2020, 148, 697–703. [Google Scholar] [CrossRef]
- Abouelaz, A.; Achak, A.; Daher, R.; Safouane, N. Donoho-Stark’s Uncertainty Principle for the quaternion Fourier transform. Bol. Soc. Mat. Mex. 2020, 26, 587–597. [Google Scholar] [CrossRef]
- Zhu, X.; Zheng, S. Uncertainty principles for the two-sided quaternion linear canonical transform. Circuits Syst. Signal Process 2020, 39, 4436–4458. [Google Scholar] [CrossRef]
- Achak, A.; Abouelaz, A.; Daher, R.; Safouane, N. Uncertainty principles for the quaternion linear canonical transform. Adv. Appl. Clifford Algebr. 2019, 29, 99. [Google Scholar] [CrossRef]
- Zhu, X.; Zheng, S. On uncertainty principle for the two-sided quaternion linear canonical transform. J. Pseudo-Differ. Oper. Appl. 2021, 12, 3. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Li, B.Z. Novel uncertainty principles for two-sided quaternion linear canonical transform. Adv. Appl. Clifford Algebr. 2018, 28, 15. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damang, D.; Bahri, M.; Toaha, S. Novel Uncertainty Principles Related to Quaternion Linear Canonical S-Transform. Symmetry 2024, 16, 885. https://doi.org/10.3390/sym16070885
Damang D, Bahri M, Toaha S. Novel Uncertainty Principles Related to Quaternion Linear Canonical S-Transform. Symmetry. 2024; 16(7):885. https://doi.org/10.3390/sym16070885
Chicago/Turabian StyleDamang, Dahnial, Mawardi Bahri, and Syamsuddin Toaha. 2024. "Novel Uncertainty Principles Related to Quaternion Linear Canonical S-Transform" Symmetry 16, no. 7: 885. https://doi.org/10.3390/sym16070885
APA StyleDamang, D., Bahri, M., & Toaha, S. (2024). Novel Uncertainty Principles Related to Quaternion Linear Canonical S-Transform. Symmetry, 16(7), 885. https://doi.org/10.3390/sym16070885