A Note on the Application of the Double Sumudu–Generalized Laplace Decomposition Method and 1+1- and 2+1-Dimensional Time-Fractional Boussinesq Equations
Abstract
:1. Introduction
- (1)
- GLT in place of “generalized Laplace transform”;
- (2)
- DST in place of “double Sumudu transform”;
- (3)
- DSGLT in place of “double Sumudu–generalized Laplace transform”;
- (4)
- DSGLTDM in place of “double Sumudu–generalized Laplace transform decomposition method”.
2. Some Essential Ideas Related to the DSGLT
3. Main Results of Double Sumudu–Generalized Laplace Transform (DSGLT)
3.1. Sumudu–Generalized Laplace Transform Decomposition Method (SGLTDM) and 1+1-Dimensional Fractional Boussinesq Equation
3.2. Double Sumudu–Generalized Laplace Transform Decomposition and Singular 2+1-Dimensional Boussinesq Equation
4. Double Sumudu–Generalized Laplace Transform Decomposition and Singular 2+1-Dimensional Coupled System Boussinesq Equation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boussinesq, J. Thorie de lintumescence liquide appele onde solitaire ou de translation se propageant dans un canal rectangulaire. C. R. Acad. Sci. 1871, 72, 755–759. [Google Scholar]
- Zabusky, N.J. Nonlinear Partial Differential Equations; Academic Press: New York, NY, USA, 1967. [Google Scholar]
- Gal, C.G.; Miranville, A. Uniform global attractors for non-isothermal viscous and non-viscous Cahn-Hilliard equations with dynamic boundary conditions. Nonlinear Anal. Real World Appl. 2009, 10, 1738–1766. [Google Scholar] [CrossRef]
- Kato, T.; Nishida, T. A mathematical justification for Korteweg-de Vries equation and Boussinesq equation of water surface waves. Osaka J. Math. 1986, 23, 389–413. [Google Scholar]
- Clarkson, A.; LeVeque, R.J.; Saxton, R. Solitary-wave interactions in elastic rods. Stud. Appl. Math. 1986, 75, 95–122. [Google Scholar] [CrossRef]
- Wazwaz, A.M. Construction of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method. Chaos Solitons Fractals 2001, 12, 1549–1556. [Google Scholar] [CrossRef]
- Chen, F.; Liu, Q. Modified asymptotic Adomian decomposition method for solving Boussinesq equation of groundwater flow. Appl. Math. Mech. 2014, 35, 481–488. [Google Scholar] [CrossRef]
- Attili, B.S. The Adomian decomposition method for solving the Boussinesq equation arising in water wave propagation. Numer. Method Partial Differ. Equ. 2006, 22, 1337–1347. [Google Scholar] [CrossRef]
- Fernandez, F.M. On the homotopy perturbation method for Boussinesq-like equations. Appl. Math. Comput. 2014, 230, 208–210. [Google Scholar] [CrossRef]
- Gupta, A.K.; Ray, S.S. Comparison between homotopy perturbation method and optimal homotopy asymptotic method for the soliton solutions of Boussinesq–Burger equations. Comput. Fluids 2014, 103, 34–41. [Google Scholar] [CrossRef]
- Lu, D.; Shen, J.; Cheng, Y. The approximate solutions of nonlinear Boussinesq equation. J. Phys. Conf. Ser. 2016, 710, 012001. [Google Scholar] [CrossRef]
- Patel, H.S.; Meher, R. Application of Laplace Adomian Decomposition Method for the soliton solutions of Boussinesq-Burger equations. Int. J. Adv. Appl. Math. Mech. 2015, 3, 50–58. [Google Scholar]
- Zhang, J.; Wu, Y.; Li, X. Quasi-periodic solution of the (2+1)-dimensional boussinesq-burgers soliton equation. Phys. A Stat. Mech. Appl. 2003, 319, 213–232. [Google Scholar] [CrossRef]
- Liang, Z.; Zhang, L.-F.; Li, C.-Y. Some new exact solutions of jacobian elliptic function about the generalized Boussinesq equation and Boussinesq Burgers equation. Chin. Phys. B 2008, 17, 403. [Google Scholar] [CrossRef]
- Mehdinejadiani, B.; Jafari, H.; Baleanu, D. Derivation of a fractional Boussinesq equation for modelling unconfined groundwater. Eur. Phys. J. Spec. Top. 2013, 222, 805–1812. [Google Scholar] [CrossRef]
- El-Wakil, S.A.; Abulwafa, E.M. Formulation and solution of space-time fractional Boussinesq equation. Nonlinear Dyn. 2015, 80, 167–175. [Google Scholar] [CrossRef]
- Prakasha, D.G.; Malagi, N.S.; Veeresha, P. New approach for fractional Schrodinger-Boussinesq equations with Mittag-Leffler kernel. Math. Methods Appl. Sci. 2020, 43, 9654–9670. [Google Scholar] [CrossRef]
- Kim, H. The intrinsic structure and properties of Laplace-typed integral transforms. Math. Probl. Eng. 2017, 2017, 1762729. [Google Scholar] [CrossRef]
- Supaknaree, S.; Nonlapon, K.; Kim, H. Further properties of Laplace-type integral transform. Dyn. Syst. Appl. 2019, 28, 195–215. [Google Scholar] [CrossRef]
- Nuruddeen, R.I.; Akbar, Y.; Kim, H. On the application of Gα integral transform to nonlinear dynamical models with non-integer order derivatives. AIMS Math. 2022, 7, 17859–17878. [Google Scholar] [CrossRef]
- Ahmeda, Z.; Idreesb, M.I.; Belgacemc, F.B.-M.; Perveen, Z. On the convergence of double Sumudu transform. J. Nonlinear Sci. Appl. 2019, 13, 154–162. [Google Scholar] [CrossRef]
- Kadhem, H.S.; Hasan, S.Q. Numerical double Sumudu transform for nonlinear mixed fractional partial differential equations. J. Phys. Conf. Ser. 2019, 1279, 012048. [Google Scholar] [CrossRef]
- Kiwne, S.B.; Sonawane, S.M. Applications of Sumudu transform of two variable functions with Hermite polynomial to partial differential equations. Adv. Math. Sci. J. 2020, 9, 107–118. [Google Scholar] [CrossRef]
- Eltayeb, H.; Alhefthi, R.K. Solution of Fractional Third-Order Dispersive Partial Differential Equations and Symmetric KdV via Sumudu–Generalized Laplace Transform Decomposition. Symmetry 2023, 15, 1540. [Google Scholar] [CrossRef]
- Eltayeb, H. Application of Double Sumudu-Generalized Laplace Decomposition Method for Solving 2+1-Pseudoparabolic Equation. Axioms 2023, 12, 799. [Google Scholar] [CrossRef]
- Alyobi, S.; Shah, R.; Khan, A.; Shah, N.A.; Nonlaopon, K. Fractional Analysis of Nonlinear Boussinesq Equation under Atangana–Baleanu–Caputo Operator. Symmetry 2022, 14, 2417. [Google Scholar] [CrossRef]
- Eltayeb, H.; Bachar, I.; Gad-Allah, M. Solution of singular one-dimensional Boussinesq equation by using double conformable Laplace decomposition method. Adv. Differ. Equ. 2019, 2019, 293. [Google Scholar] [CrossRef]
- Agarwal, R.; Yadav, M.P.; Agarwal, R.P. Space-time fractional Boussinesq equation with singular and nonsingular kernels. Int. J. Dyn. Syst. Differ. Equ. 2020, 10, 415–426. [Google Scholar] [CrossRef]
- Muhammad, T.; Hamoud, A.A.; Emadifar, H.; Hamasalh, F.K.; Azizi, H.; Khademi, M. Traveling wave solutions to the Boussinesq equation via Sardar sub-equation technique. AIMS Math. 2022, 7, 11134–11149. [Google Scholar]
- Tchuenche, J.M.; Mbare, N.S. Mbare, An Application of the double Sumudu Transform. Appl. Math. Sci. 2007, 1, 31–39. [Google Scholar]
- Bayrak, M.; Demir, A. A new approach for space-time fractional partial differential equations by residual power series method. Appl. Math. Comput. 2018, 336, 215–230. [Google Scholar]
- Thabet, H.; Kendre, S. Analytical solutions for conformable space-time fractional partial differential equations via fractional differential transform. Chaos Solitons Fractals 2018, 109, 238–245. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eltayeb, H.; Mesloub, S. A Note on the Application of the Double Sumudu–Generalized Laplace Decomposition Method and 1+1- and 2+1-Dimensional Time-Fractional Boussinesq Equations. Symmetry 2024, 16, 665. https://doi.org/10.3390/sym16060665
Eltayeb H, Mesloub S. A Note on the Application of the Double Sumudu–Generalized Laplace Decomposition Method and 1+1- and 2+1-Dimensional Time-Fractional Boussinesq Equations. Symmetry. 2024; 16(6):665. https://doi.org/10.3390/sym16060665
Chicago/Turabian StyleEltayeb, Hassan, and Said Mesloub. 2024. "A Note on the Application of the Double Sumudu–Generalized Laplace Decomposition Method and 1+1- and 2+1-Dimensional Time-Fractional Boussinesq Equations" Symmetry 16, no. 6: 665. https://doi.org/10.3390/sym16060665
APA StyleEltayeb, H., & Mesloub, S. (2024). A Note on the Application of the Double Sumudu–Generalized Laplace Decomposition Method and 1+1- and 2+1-Dimensional Time-Fractional Boussinesq Equations. Symmetry, 16(6), 665. https://doi.org/10.3390/sym16060665