Enhancing Knowledge Graph Embedding with Hierarchical Self-Attention and Graph Neural Network Techniques for Drug-Drug Interaction Prediction in Virtual Reality Environments
Abstract
:1. Introduction
- In this paper, we combine the self-attention mechanism and KG-based models to construct a model HSTrHouse that can consider the entire BioKG structure information by using Householder projections in complex vector space to model complex relation patterns, such as RMPs and hierarchies.
- Our model integrates PubMedBERT [6], CNN, and GNN to capture the position feature and molecular structure features in the abstract description, increasing the interpretability of the properties and relations of the entities.
- We have conducted extensive experiments on three BioKGs to demonstrate the effectiveness of HSTrHouse in predicting DDIs and their interpretability.
2. Related Work
3. Model Building
3.1. Position Feature
3.2. Molecular Structure
3.3. Encoder Module
3.4. Decoder Module
3.4.1. Knowledge Graph
3.4.2. Householder Projections
4. Experiments
4.1. Datasets
4.2. Baselines and Metrics
- Accuracy (Acc.): This essential metric assesses the overall rate of correct predictions made by the model.
- Precision (Pre.): This metric measures the accuracy of the model in identifying only relevant instances as positive.It gains importance in situations where the implications of false positives are severe.
- Recall (Rec.): Also known as Sensitivity, this metric assesses the model’s ability to detect all actual positives.It is essential in applications where failing to identify a positive instance could be detrimental.
- F1 Score (F1): Balances Precision and Recall, providing a single score that gauges the accuracy of the model’s positive predictions and its thoroughness in capturing positive instances.This metric is particularly valuable in situations where classes are imbalanced.
- Area Under the ROC Curve (AUC): This metric measures the area beneath the Receiver Operating Characteristic (ROC) curve, which plots the True Positive Rate (TPR, or Recall) against the False Positive Rate (FPR). An AUC near 1 signifies superior model performance. The ROC curve’s area is usually calculated through a graphical method rather than a direct formula.
- Area Under the Precision–Recall Curve (AUPR): The AUPR metric quantifies the area under the Precision–Recall curve, which is crucial for evaluating models on imbalanced datasets. Like the AUC, the precise value of AUPR is typically derived through graphical analysis rather than a straightforward mathematical formula.
4.3. Implementation Details
4.4. Experimental Results and Analysis
4.4.1. Different Features
4.4.2. The Numbers of Modified Householder Matrices
4.5. Extended Applications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sridhar, D.; Fakhraei, S.; Getoor, L. A probabilistic approach for collective similarity-based drug–drug interaction prediction. Bioinformatics 2016, 32, 3175–3182. [Google Scholar] [CrossRef] [PubMed]
- Devlin, J.; Chang, M.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2–7 June 2019; Burstein, J., Doran, C., Solorio, T., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2019; Volume 1, pp. 4171–4186. [Google Scholar] [CrossRef]
- Lee, J.; Yoon, W.; Kim, S.; Kim, D.; Kim, S.; So, C.H.; Kang, J. BioBERT: A pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 2020, 36, 1234–1240. [Google Scholar] [CrossRef] [PubMed]
- Beltagy, I.; Lo, K.; Cohan, A. SciBERT: A Pretrained Language Model for Scientific Text. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, 3–7 November 2019; Inui, K., Jiang, J., Ng, V., Wan, X., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2019; pp. 3613–3618. [Google Scholar] [CrossRef]
- Peng, Y.; Chen, Q.; Lu, Z. An Empirical Study of Multi-Task Learning on BERT for Biomedical Text Mining. In Proceedings of the 19th SIGBioMed Workshop on Biomedical Language Processing, BioNLP 2020, Online, 9 July 2020; Demner-Fushman, D., Cohen, K.B., Ananiadou, S., Tsujii, J., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2020; pp. 205–214. [Google Scholar] [CrossRef]
- Gu, Y.; Tinn, R.; Cheng, H.; Lucas, M.; Usuyama, N.; Liu, X.; Naumann, T.; Gao, J.; Poon, H. Domain-Specific Language Model Pretraining for Biomedical Natural Language Processing. ACM Trans. Comput. Healthc. 2022, 3, 2:1–2:23. [Google Scholar] [CrossRef]
- Nickel, M.; Murphy, K.; Tresp, V.; Gabrilovich, E. A Review of Relational Machine Learning for Knowledge Graphs. Proc. IEEE 2016, 104, 11–33. [Google Scholar] [CrossRef]
- Guan, N.; Song, D.; Liao, L. Knowledge graph embedding with concepts. Knowl. Based Syst. 2019, 164, 38–44. [Google Scholar] [CrossRef]
- Su, X.; You, Z.; Huang, D.; Wang, L.; Wong, L.; Ji, B.; Zhao, B. Biomedical Knowledge Graph Embedding with Capsule Network for Multi-Label Drug-Drug Interaction Prediction. IEEE Trans. Knowl. Data Eng. 2023, 35, 5640–5651. [Google Scholar] [CrossRef]
- Li, L.; Yu, M.; Chin, R.; Lucksiri, A.; Flockhart, D.A.; Hall, S.D. Drug–drug interaction prediction: A Bayesian meta-analysis approach. Stat. Med. 2007, 26, 3700–3721. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, M.F.M.; Lavelli, A. FBK-irst: A Multi-Phase Kernel Based Approach for Drug-Drug Interaction Detection and Classification that Exploits Linguistic Information. In Proceedings of the 7th International Workshop on Semantic Evaluation, SemEval@NAACL-HLT 2013, Atlanta, GA, USA, 14–15 June 2013; Diab, M.T., Baldwin, T., Baroni, M., Eds.; The Association for Computer Linguistics: Stroudsburg, PA, USA, 2013; pp. 351–355. [Google Scholar]
- Thomas, P.; Neves, M.L.; Rocktäschel, T.; Leser, U. WBI-DDI: Drug-Drug Interaction Extraction using Majority Voting. In Proceedings of the 7th International Workshop on Semantic Evaluation, SemEval@NAACL-HLT 2013, Atlanta, GA, USA, 14–15 June 2013; Diab, M.T., Baldwin, T., Baroni, M., Eds.; The Association for Computer Linguistics: Stroudsburg, PA, USA, 2013; pp. 628–635. [Google Scholar]
- Bokharaeian, B.; Díaz, A. NIL_UCM: Extracting Drug-Drug interactions from text through combination of sequence and tree kernels. In Proceedings of the International Workshop on Semantic Evaluation, SemEval@NAACL-HLT 2013, Atlanta, GA, USA, 14–15 June 2013; Diab, M.T., Baldwin, T., Baroni, M., Eds.; The Association for Computer Linguistics: Stroudsburg, PA, USA, 2013; pp. 644–650. [Google Scholar]
- Kim, S.; Liu, H.; Yeganova, L.; Wilbur, W.J. Extracting drug-drug interactions from literature using a rich feature-based linear kernel approach. J. Biomed. Inform. 2015, 55, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Sun, X.; Chen, J.; Sutcliffe, R.F.E. Extracting Drug-Drug Interactions from Biomedical Texts using Knowledge Graph Embeddings and Multi-focal Loss. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management, Atlanta, GA, USA, 17–21 October 2022; Hasan, M.A., Xiong, L., Eds.; ACM: New York, NY, USA, 2022; pp. 884–893. [Google Scholar] [CrossRef]
- Belkin, M.; Niyogi, P. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Comput. 2003, 15, 1373–1396. [Google Scholar] [CrossRef]
- Cao, S.; Lu, W.; Xu, Q. GraRep: Learning Graph Representations with Global Structural Information. In Proceedings of the 24th ACM International Conference on Information and Knowledge Management, CIKM 2015, Melbourne, VIC, Australia, 19–23 October 2015; Bailey, J., Moffat, A., Aggarwal, C.C., de Rijke, M., Kumar, R., Murdock, V., Sellis, T.K., Yu, J.X., Eds.; ACM: New York, NY, USA, 2015; pp. 891–900. [Google Scholar] [CrossRef]
- Perozzi, B.; Al-Rfou, R.; Skiena, S. DeepWalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’14, New York, NY, USA, 24–27 August 2014; Macskassy, S.A., Perlich, C., Leskovec, J., Wang, W., Ghani, R., Eds.; ACM: New York, NY, USA, 2014; pp. 701–710. [Google Scholar] [CrossRef]
- Grover, A.; Leskovec, J. node2vec: Scalable Feature Learning for Networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Krishnapuram, B., Shah, M., Smola, A.J., Aggarwal, C.C., Shen, D., Rastogi, R., Eds.; ACM: New York, NY, USA, 2016; pp. 855–864. [Google Scholar] [CrossRef]
- Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; Mei, Q. LINE: Large-scale Information Network Embedding. In Proceedings of the International Conference on World Wide Web, WWW 2015, Florence, Italy, 18–22 May 2015; Gangemi, A., Leonardi, S., Panconesi, A., Eds.; ACM: New York, NY, USA, 2015; pp. 1067–1077. [Google Scholar] [CrossRef]
- Wang, D.; Cui, P.; Zhu, W. Structural Deep Network Embedding. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Krishnapuram, B., Shah, M., Smola, A.J., Aggarwal, C.C., Shen, D., Rastogi, R., Eds.; ACM: New York, NY, USA, 2016; pp. 1225–1234. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, L.; Lu, H.; Zhou, A.; Qin, X. Extracting drug-drug interactions from texts with BioBERT and multiple entity-aware attentions. J. Biomed. Inform. 2020, 106, 103451. [Google Scholar] [CrossRef]
- Asada, M.; Miwa, M.; Sasaki, Y. Using drug descriptions and molecular structures for drug-drug interaction extraction from literature. Bioinformatics 2021, 37, 1739–1746. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Lin, J.; Li, X.; Song, L.; Zheng, Z.; Wong, K. EGFI: Drug-drug interaction extraction and generation with fusion of enriched entity and sentence information. Briefings Bioinform. 2022, 23, bbab451. [Google Scholar] [CrossRef]
- Abdelaziz, I.; Fokoue, A.; Hassanzadeh, O.; Zhang, P.; Sadoghi, M. Large-scale structural and textual similarity-based mining of knowledge graph to predict drug-drug interactions. J. Web Semant. 2017, 44, 104–117. [Google Scholar] [CrossRef]
- Çelebi, R.; Yasar, E.; Uyar, H.; Gümüs, Ö.; Dikenelli, O.; Dumontier, M. Evaluation of knowledge graph embedding approaches for drug-drug interaction prediction using Linked Open Data. In Proceedings of the 11th International Conference Semantic Web Applications and Tools for Life Sciences, SWAT4LS 2018, Antwerp, Belgium, 3–6 December 2018; Volume 2275. [Google Scholar]
- Bordes, A.; Usunier, N.; García-Durán, A.; Weston, J.; Yakhnenko, O. Translating Embeddings for Modeling Multi-relational Data. In Proceedings of the Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013, Lake Tahoe, NV, USA, 5–8 December 2013; pp. 2787–2795. [Google Scholar]
- Ji, G.; He, S.; Xu, L.; Liu, K.; Zhao, J. Knowledge Graph Embedding via Dynamic Mapping Matrix. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, ACL 2015, Beijing, China, 26–31 July 2015; The Association for Computer Linguistics: Stroudsburg, PA, USA, 2015; Volume 1, pp. 687–696. [Google Scholar] [CrossRef]
- Mondal, I. BERTKG-DDI: Towards Incorporating Entity-Specific Knowledge Graph Information in Predicting Drug-Drug Interactions. In Proceedings of the Workshop on Scientific Document Understanding Co-Located with 35th AAAI Conference on Artificial Inteligence, SDU@AAAI 2021, Virtual Event, 9 February 2021; Veyseh, A.P.B., Dernoncourt, F., Nguyen, T.H., Chang, W., Celi, L.A., Eds.; CEUR Workshop Proceedings: 2021. Volume 2831. Available online: https://ceur-ws.org/Vol-2831/paper5.pdf (accessed on 21 December 2020).
- Ma, T.; Xiao, C.; Zhou, J.; Wang, F. Drug Similarity Integration through Attentive Multi-View Graph Auto-Encoders. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, Stockholm, Sweden, 13–19 July 2018; pp. 3477–3483. [Google Scholar] [CrossRef]
- Lin, X.; Quan, Z.; Wang, Z.; Ma, T.; Zeng, X. KGNN: Knowledge Graph Neural Network for Drug-Drug Interaction Prediction. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, Yokohama, Japan, 7–15 January 2021; pp. 2739–2745. [Google Scholar] [CrossRef]
- Sun, Z.; Deng, Z.; Nie, J.; Tang, J. RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space. In Proceedings of the 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019; Available online: https://openreview.net/forum?id=HkgEQnRqYQ (accessed on 21 December 2018).
- Kudo, T.; Richardson, J. SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018: System Demonstrations, Brussels, Belgium, 31 October–4 November 2018; Blanco, E., Lu, W., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2018; pp. 66–71. [Google Scholar] [CrossRef]
- Hendrycks, D.; Gimpel, K. Bridging Nonlinearities and Stochastic Regularizers with Gaussian Error Linear Units. arXiv 2016, arXiv:1606.08415. [Google Scholar]
- Tsubaki, M.; Tomii, K.; Sese, J. Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences. Bioinformatics 2019, 35, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; Yakhnenko, O. Translating embeddings for modeling multi-relational data. Adv. Neural Inf. Process. Syst. 2013, 26. [Google Scholar]
- Wang, Z.; Zhang, J.; Feng, J.; Chen, Z. Knowledge graph embedding by translating on hyperplanes. In Proceedings of the AAAI Conference on Artificial Intelligence, Quebec City, QC, Canada, 27–31 July 2014; Volume 35. [Google Scholar]
- Lin, Y.; Liu, Z.; Sun, M.; Liu, Y.; Zhu, X. Learning entity and relation embeddings for knowledge graph completion. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015. [Google Scholar]
- Sun, Z.; Deng, Z.H.; Nie, J.Y.; Tang, J. Rotate: Knowledge graph embedding by relational rotation in complex space. arXiv 2019, arXiv:1902.10197. [Google Scholar]
- Zhang, S.; Tay, Y.; Yao, L.; Liu, Q. Quaternion knowledge graph embeddings. Adv. Neural Inf. Process. Syst. 2019, 32. [Google Scholar]
- Cao, Z.; Xu, Q.; Yang, Z.; Cao, X.; Huang, Q. Dual quaternion knowledge graph embeddings. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021; Volume 35, pp. 6894–6902. [Google Scholar]
- Balazevic, I.; Allen, C.; Hospedales, T. Multi-relational poincaré graph embeddings. Adv. Neural Inf. Process. Syst. 2019, 32. [Google Scholar]
- Chami, I.; Wolf, A.; Juan, D.C.; Sala, F.; Ravi, S.; Ré, C. Low-dimensional hyperbolic knowledge graph embeddings. arXiv 2020, arXiv:2005.00545. [Google Scholar]
- Nguyen, D.Q.; Nguyen, T.D.; Nguyen, D.Q.; Phung, D. A novel embedding model for knowledge base completion based on convolutional neural network. arXiv 2017, arXiv:1712.02121. [Google Scholar]
- Jiang, X.; Wang, Q.; Wang, B. Adaptive convolution for multi-relational learning. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, MN, USA, 2–7 June 2019; Volume 1, pp. 978–987. [Google Scholar]
- Nguyen, D.Q.; Vu, T.; Nguyen, T.D.; Nguyen, D.Q.; Phung, D. A capsule network-based embedding model for knowledge graph completion and search personalization. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, MN, USA, 2–7 June 2019; Volume 1, pp. 2180–2189. [Google Scholar]
- Guo, L.; Sun, Z.; Hu, W. Learning to exploit long-term relational dependencies in knowledge graphs. In Proceedings of the International Conference on Machine Learning. PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 2505–2514. [Google Scholar]
- Guo, J.; Kok, S. BiQUE: Biquaternionic Embeddings of Knowledge Graphs. arXiv 2021, arXiv:2109.14401. [Google Scholar]
- Li, R.; Zhao, J.; Li, C.; He, D.; Wang, Y.; Liu, Y.; Sun, H.; Wang, S.; Deng, W.; Shen, Y.; et al. HousE: Knowledge Graph Embedding with Householder Parameterization. In Proceedings of the International Conference on Machine Learning, ICML 2022, Baltimore, MD, USA, 17–23 July 2022; Volume 162, pp. 13209–13224. [Google Scholar]
- Hu, W.; Fey, M.; Zitnik, M.; Dong, Y.; Ren, H.; Liu, B.; Catasta, M.; Leskovec, J. Open Graph Benchmark: Datasets for Machine Learning on Graphs. In Proceedings of the Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, Virtual, 6–12 December 2020. [Google Scholar]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017, 45, D353–D361. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; He, X.; Cao, Y.; Liu, M.; Chua, T. KGAT: Knowledge Graph Attention Network for Recommendation. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, 4–8 August 2019; Teredesai, A., Kumar, V., Li, Y., Rosales, R., Terzi, E., Karypis, G., Eds.; ACM: New York, NY, USA, 2019; pp. 950–958. [Google Scholar] [CrossRef]
- Schlichtkrull, M.S.; Kipf, T.N.; Bloem, P.; van den Berg, R.; Titov, I.; Welling, M. Modeling Relational Data with Graph Convolutional Networks. In Proceedings of the Semantic Web-15th International Conference, ESWC 2018, Heraklion, Crete, Greece, 3–7 June 2018; Gangemi, A., Navigli, R., Vidal, M., Hitzler, P., Troncy, R., Hollink, L., Tordai, A., Alam, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; Volume 10843, pp. 593–607. [Google Scholar] [CrossRef]
Datasets | #Drugs | #Interactions | #Entities | #Relations | #Triples |
---|---|---|---|---|---|
OGB-biokg | 10,533 | 1,195,972 | 93,773 | 51 | 5,088,434 |
DrugBank | 3797 | 1,236,361 | 2,116,569 | 74 | 7,740,864 |
KEGG | 1925 | 56,983 | 129,910 | 168 | 362,870 |
Datasets | Methods | ACC. | Pre. | Rec. | F1 | Auc | AUPR |
---|---|---|---|---|---|---|---|
OGB-Biokg | Laplacian | 0.5710 ± 0.003 | 0.5296 ± 0.005 | 0.5934 ± 0.004 | 0.5597 ± 0.005 | 0.5692 ± 0.0002 | 0.5861 ± 0.0004 |
DeepWalk | 0.5681 ± 0.004 | 0.5473 ± 0.007 | 0.5223 ± 0.006 | 0.5345 ± 0.005 | 0.5419 ± 0.0002 | 0.5325 ± 0.0003 | |
LINE | 0.5786 ± 0.007 | 0.5534 ± 0.011 | 0.5386 ± 0.013 | 0.5459 ± 0.011 | 0.5418 ± 0.0002 | 0.5374 ± 0.0003 | |
KGNN | 0.7389 ± 0.002 | 0.7541 ± 0.006 | 0.7245 ± 0.010 | 0.7390 ± 0.009 | 0.7849 ± 0.0008 | 0.7378 ± 0.0005 | |
KGAT | 0.7489 ± 0.002 | 0.7559 ± 0.006 | 0.7191 ± 0.006 | 0.7370 ± 0.006 | 0.7962 ± 0.0004 | 0.8011 ± 0.0004 | |
RGCN | 0.8467 ± 0.004 | 0.8773 ± 0.006 | 0.8063 ± 0.004 | 0.8403 ± 0.005 | 0.9172 ± 0.0006 | 0.9268 ± 0.0005 | |
BERTKG-DDIs | 0.8326 ± 0.003 | 0.8835 ± 0.004 | 0.8243 ± 0.005 | 0.8529 ± 0.006 | 0.8967 ± 0.0004 | 0.9167 ± 0.0004 | |
Xin et al. [15] | 0.8627 ± 0.002 | 0.9105 ± 0.008 | 0.8467 ± 0.007 | 0.8774 ± 0.005 | 0.9276 ± 0.0004 | 0.9341 ± 0.0005 | |
KG2ECapsule | 0.9078 ± 0.002 | 0.9219 ± 0.004 | 0.8914 ± 0.003 | 0.9064 ± 0.003 | 0.9656 ± 0.0002 | 0.9672 ± 0.0002 | |
HSTrTH | 0.8737 ± 0.003 | 0.9130 ± 0.011 | 0.8407 ± 0.005 | 0.8754 ± 0.003 | 0.9295 ± 0.0012 | 0.9359 ± 0.0004 | |
HSTrTR | 0.8826 ± 0.003 | 0.9169 ± 0.012 | 0.8517 ± 0.005 | 0.8831 ± 0.006 | 0.9314 ± 0.0012 | 0.9527 ± 0.0007 | |
HSTrHouse | 0.9101 ± 0.003 | 0.9271 ± 0.004 | 0.8941 ± 0.007 | 0.9103 ± 0.005 | 0.9693 ± 0.0004 | 0.9704 ± 0.0008 | |
DrugBank | Laplacian | 0.5923 ± 0.004 | 0.4455 ± 0.006 | 0.3372 ± 0.010 | 0.3838 ± 0.009 | 0.6724 ± 0.0002 | 0.4782 ± 0.0002 |
DeepWalk | 0.6163 ± 0.004 | 0.6059 ± 0.003 | 0.5904 ± 0.005 | 0.5980 ± 0.008 | 0.6501 ± 0.0002 | 0.4782 ± 0.0002 | |
LINE | 0.6374 ± 0.005 | 0.6283 ± 0.006 | 0.6189 ± 0.013 | 0.6236 ± 0.005 | 0.6926 ± 0.0002 | 0.4923 ± 0.0003 | |
KGNN | 0.7947 ± 0.003 | 0.7959 ± 0.004 | 0.7931 ± 0.004 | 0.7945 ± 0.004 | 0.8602 ± 0.0005 | 0.8587 ± 0.0005 | |
BERTKG-DDIs | 0.8469 ± 0.002 | 0.8524 ± 0.005 | 0.5681 ± 0.002 | 0.6817 ± 0.004 | 0.8925 ± 0.0006 | 0.8726 ± 0.0004 | |
Xin et al. [15] | 0.87364 ± 0.004 | 0.8672 ± 0.005 | 0.8620 ± 0.005 | 0.8646 ± 0.002 | 0.9224 ± 0.0004 | 0.9341 ± 0.0003 | |
KG2ECapsule | 0.9078 ± 0.002 | 0.9219 ± 0.004 | 0.8914 ± 0.003 | 0.9064 ± 0.003 | 0.9656 ± 0.0002 | 0.9672 ± 0.0002 | |
HSTrTH | 0.8806 ± 0.004 | 0.8692 ± 0.006 | 0.8827 ± 0.004 | 0.8759 ± 0.006 | 0.9247 ± 0.0008 | 0.9384 ± 0.0003 | |
HSTrTR | 0.8859 ± 0.003 | 0.8943 ± 0.004 | 0.8795 ± 0.007 | 0.8868 ± 0.006 | 0.9304 ± 0.0008 | 0.9372 ± 0.0006 | |
HSTrHouse | 0.9067 ± 0.004 | 0.9251 ± 0.003 | 0.8929 ± 0.005 | 0.9087 ± 0.005 | 0.9667 ± 0.0008 | 0.9685 ± 0.0011 | |
KEGG | Laplacian | 0.5694 ± 0.010 | 0.3683 ± 0.021 | 0.3781 ± 0.016 | 0.3731 ± 0.016 | 0.5608 ± 0.010 | 0.2916 ± 0.013 |
DeepWalk | 0.5800 ± 0.008 | 0.3801 ± 0.008 | 0.3762 ± 0.011 | 0.3781 ± 0.009 | 0.5751 ± 0.009 | 0.3005 ± 0.012 | |
LINE | 0.5528 ± 0.006 | 0.3546 ± 0.010 | 0.3390 ± 0.016 | 0.3466 ± 0.013 | 0.5462 ± 0.013 | 0.2810 ± 0.015 | |
KGNN | 0.7282 ± 0.008 | 0.4790 ± 0.024 | 0.4237 ± 0.013 | 0.4497 ± 0.018 | 0.8314 ± 0.009 | 0.4484 ± 0.013 | |
KGAT | 0.7798 ± 0.008 | 0.5340 ± 0.015 | 0.4185 ± 0.015 | 0.4692 ± 0.015 | 0.8202 ± 0.010 | 0.5382 ± 0.011 | |
RGCN | 0.8330 ± 0.005 | 0.4969 ± 0.012 | 0.4392 ± 0.018 | 0.4663 ± 0.015 | 0.8358 ± 0.006 | 0.4590 ± 0.010 | |
BERTKG-DDIs | 0.8216 ± 0.007 | 0.5773 ± 0.008 | 0.4587 ± 0.015 | 0.5112 ± 0.007 | 0.8267 ± 0.004 | 0.4937 ± 0.009 | |
Xin et al. [15] | 0.8367 ± 0.006 | 0.5837 ± 0.012 | 0.4592 ± 0.017 | 0.5140 ± 0.011 | 0.8426 ± 0.015 | 0.5887 ± 0.009 | |
KG2ECapsule | 0.8348 ± 0.003 | 0.6278 ± 0.008 | 0.4794 ± 0.011 | 0.5437 ± 0.009 | 0.8505 ± 0.004 | 0.6644 ± 0.007 | |
HSTrTH | 0.8359 ± 0.003 | 0.5852 ± 0.012 | 0.4601 ± 0.012 | 0.4795 ± 0.006 | 0.8439 ± 0.008 | 0.6102 ± 0.003 | |
RotatECap | 0.8397 ± 0.004 | 0.5934 ± 0.006 | 0.4639 ± 0.006 | 0.5207 ± 0.012 | 0.8407 ± 0.004 | 0.6207 ± 0.012 | |
HSTrHouse | 0.8397 ± 0.004 | 0.6361 ± 0.006 | 0.4821 ± 0.009 | 0.5485 ± 0.005 | 0.8541 ± 0.0004 | 0.6702 ± 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, L.; Zhang, S. Enhancing Knowledge Graph Embedding with Hierarchical Self-Attention and Graph Neural Network Techniques for Drug-Drug Interaction Prediction in Virtual Reality Environments. Symmetry 2024, 16, 587. https://doi.org/10.3390/sym16050587
Jiang L, Zhang S. Enhancing Knowledge Graph Embedding with Hierarchical Self-Attention and Graph Neural Network Techniques for Drug-Drug Interaction Prediction in Virtual Reality Environments. Symmetry. 2024; 16(5):587. https://doi.org/10.3390/sym16050587
Chicago/Turabian StyleJiang, Lizhen, and Sensen Zhang. 2024. "Enhancing Knowledge Graph Embedding with Hierarchical Self-Attention and Graph Neural Network Techniques for Drug-Drug Interaction Prediction in Virtual Reality Environments" Symmetry 16, no. 5: 587. https://doi.org/10.3390/sym16050587
APA StyleJiang, L., & Zhang, S. (2024). Enhancing Knowledge Graph Embedding with Hierarchical Self-Attention and Graph Neural Network Techniques for Drug-Drug Interaction Prediction in Virtual Reality Environments. Symmetry, 16(5), 587. https://doi.org/10.3390/sym16050587