Estimation of Multiresponse Multipredictor Nonparametric Regression Model Using Mixed Estimator
Abstract
1. Introduction
2. Materials and Methods
2.1. The MMNR Model
2.2. Mixed Smoothing Spline and Fourier Series Estimator
2.3. Reproducing Kernel Hilbert Space (RKHS)
- (i)
- If is a vector, then , namely, is the subspace of a vector space over , which is notated by (X,);
- (ii)
- If is equipped with an inner product, , then it will be a Hilbert space;
- (iii)
- If is a linear evaluation functional that is defined by for every X, then the linear evaluation functional is bounded.
2.4. Penalized Weighted Least Square (PWLS) Optimization
3. Results and Discussions
- ; ; ;…; ; ;
- ;…; ;
- ; ;…;
- ; ;
- ; …; .
3.1. Determining Smoothing Spline Component of MMNR Model
- ;
- ;
- ;
- ;
- .
3.2. Determining Fourier Series Component of MMNR Model
- ;
- ;
- .
3.3. Determining Goodness of Fit and Penalty Components of PWLS Optimization
- ;
- ;
- .
3.4. Estimating the MMNR Model
3.5. Estimating Weight Matrix W
3.6. Selecting Optimal Smoothing and Oscillation Parameters in the MMNR Model
- ,
- , and
- .
3.7. Consistency of Regression Function Estimator of MMNR Model
3.8. Simulation Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eubank, R.L. Nonparametric Regression and Spline Smoothing, 2nd ed.; Marcel Dekker: New York, NY, USA, 1999. [Google Scholar]
- Cheruiyot, L.R. Local linear regression estimator on the boundary correction in nonparametric regression estimation. J. Stat. Theory Appl. 2020, 19, 460–471. [Google Scholar] [CrossRef]
- Cheng, M.-Y.; Huang, T.; Liu, P.; Peng, H. Bias reduction for nonparametric and semiparametric regression models. Stat. Sin. 2018, 28, 2749–2770. [Google Scholar] [CrossRef]
- Chamidah, N.; Zaman, B.; Muniroh, L.; Lestari, B. Designing local standard growth charts of children in East Java province using a local linear estimator. Int. J. Innov. Creat. Change 2020, 13, 45–67. [Google Scholar]
- Delaigle, A.; Fan, J.; Carroll, R.J. A design-adaptive local polynomial estimator for the errors-in-variables problem. J. Am. Stat. Assoc. 2009, 104, 348–359. [Google Scholar] [CrossRef]
- Francisco-Fernandez, M.; Vilar-Fernandez, J.M. Local polynomial regression estimation with correlated errors. Comm. Stat. Theory Methods 2001, 30, 1271–1293. [Google Scholar] [CrossRef]
- Benhenni, K.; Degras, D. Local polynomial estimation of the mean function and its derivatives based on functional data and regular designs. ESAIM Probab. Stat. 2014, 18, 881–899. [Google Scholar] [CrossRef]
- Kikechi, C.B. On local polynomial regression estimators in finite populations. Int. J. Stats. Appl. Math. 2020, 5, 58–63. [Google Scholar]
- Wand, M.P.; Jones, M.C. Kernel Smoothing, 1st ed.; Chapman and Hall/CRC: New York, NY, USA, 1995. [Google Scholar]
- Cui, W.; Wei, M. Strong consistency of kernel regression estimate. Open J. Stats. 2013, 3, 179–182. [Google Scholar] [CrossRef]
- De Brabanter, K.; De Brabanter, J.; Suykens, J.A.K.; De Moor, B. Kernel regression in the presence of correlated errors. J. Mach. Learn. Res. 2011, 12, 1955–1976. [Google Scholar]
- Wahba, G. Spline Models for Observational Data; SIAM: Philadelphia, PA, USA, 1990. [Google Scholar]
- Wang, Y. Smoothing Splines: Methods and Applications; Taylor & Francis Group: Boca Raton, FL, USA, 2011. [Google Scholar]
- Liu, A.; Qin, L.; Staudenmayer, J. M-type smoothing spline ANOVA for correlated data. J. Multivar. Anal. 2010, 101, 2282–2296. [Google Scholar] [CrossRef]
- Gao, J.; Shi, P. M-Type smoothing splines in nonparametric and semiparametric regression models. Stat. Sin. 1997, 7, 1155–1169. [Google Scholar]
- Chamidah, N.; Lestari, B.; Massaid, A.; Saifudin, T. Estimating mean arterial pressure affected by stress scores using spline nonparametric regression model approach. Commun. Math. Biol. Neurosci. 2020, 2020, 72. [Google Scholar]
- Chamidah, N.; Lestari, B.; Budiantara, I.N.; Saifudin, T.; Rulaningtyas, R.; Aryati, A.; Wardani, P.; Aydin, D. Consistency and asymptotic normality of estimator for parameters in multiresponse multipredictor semiparametric regression model. Symmetry 2022, 14, 336. [Google Scholar] [CrossRef]
- Lestari, B.; Chamidah, N.; Budiantara, I.N.; Aydin, D. Determining confidence interval and asymptotic distribution for parameters of multiresponse semiparametric regression model using smoothing spline estimator. J. King Saud Univ.-Sci. 2023, 35, 102664. [Google Scholar] [CrossRef]
- Tirosh, S.; De Ville, D.V.; Unser, M. Polyharmonic smoothing splines and the multidimensional Wiener filtering of fractal-like signals. IEEE Trans. Image Process. 2006, 15, 2616–2630. [Google Scholar] [CrossRef]
- Irizarry, R.A. Choosing Smoothness Parameters for Smoothing Splines by Minimizing an Estimate of Risk. Available online: https://www.biostat.jhsph.edu/~ririzarr/papers/react-splines.pdf (accessed on 3 February 2024).
- Adams, S.O.; Ipinyomi, R.A.; Yahaya, H.U. Smoothing spline of ARMA observations in the presence of autocorrelation error. Eur. J. Stats. Prob. 2017, 5, 1–8. [Google Scholar]
- Adams, S.O.; Yahaya, H.U.; Nasiru, O.M. Smoothing parameter estimation of the generalized cross-validation and generalized maximum likelihood. IOSR J. Math. 2017, 13, 41–44. [Google Scholar]
- Lee, T.C.M. Smoothing parameter selection for smoothing splines: A simulation study. Comput. Stats. Data Anal. 2003, 42, 139–148. [Google Scholar] [CrossRef]
- Maharani, M.; Saputro, D.R.S. Generalized cross-validation (GCV) in smoothing spline nonparametric regression models. J. Phys. Conf. Ser. 2021, 1808, 12053. [Google Scholar] [CrossRef]
- Wang, Y.; Ke, C. Smoothing spline semiparametric nonlinear regression models. J. Comp. Graph. Stats. 2009, 18, 165–183. [Google Scholar] [CrossRef]
- Gu, C. Smoothing Spline ANOVA Models; Springer: New York, NY, USA, 2002. [Google Scholar]
- Sun, X.; Zhong, W.; Ma, P. An asymptotic and empirical smoothing parameters selection method for smoothing spline ANOVA models in large samples. Biometrika 2021, 108, 149–166. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Guo, W.; Brown, M.B. Spline smoothing for bivariate data with applications to association between hormones. Stat. Sin. 2000, 10, 377–397. [Google Scholar]
- Lu, M.; Liu, Y.; Li, C.-S. Efficient estimation of a linear transformation model for current status data via penalized splines. Stat. Methods Med. Res. 2020, 29, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Berry, L.N.; Helwig, N.E. Cross-validation, information theory, or maximum likelihood? A comparison of tuning methods for penalized splines. Stats 2021, 4, 701–724. [Google Scholar] [CrossRef]
- Islamiyati, A.; Zakir, M.; Sirajang, N.; Sari, U.; Affan, F.; Usrah, M.J. The use of penalized weighted least square to overcome correlations between two responses. BAREKENG J. Ilmu Mat. Dan Terap. 2022, 16, 1497–1504. [Google Scholar] [CrossRef]
- Islamiyati, A.; Raupong; Kalondeng, A.; Sari, U. Estimating the confidence interval of the regression coefficient of the blood sugar model through a multivariable linear spline with known variance. Stat. Transit. New Ser. 2022, 23, 201–212. [Google Scholar] [CrossRef]
- Kirkby, J.L.; Leitao, A.; Nguyen, D. Nonparametric density estimation and bandwidth selection with B-spline basis: A novel Galerkin method. Comput. Stats. Data Anal. 2021, 159, 107202. [Google Scholar] [CrossRef]
- Osmani, F.; Hajizadeh, E.; Mansouri, P. Kernel and regression spline smoothing techniques to estimate coefficient in rates model and its application in psoriasis. Med. J. Islam. Repub. Iran 2019, 33, 90. [Google Scholar] [CrossRef] [PubMed]
- Lestari, B.; Chamidah, N.; Aydin, D.; Yilmaz, E. Reproducing kernel Hilbert space approach to multiresponse smoothing spline regression function. Symmetry 2022, 14, 2227. [Google Scholar] [CrossRef]
- Bilodeau, M. Fourier smoother and additive models. Can. J. Stat. 1992, 20, 257–269. [Google Scholar] [CrossRef]
- Suparti, S.; Prahutama, A.; Santoso, R.; Devi, A.R. Spline-Fourier’s Method for Modelling Inflation in Indonesia. E3S Web Conf. 2018, 73, 13003. [Google Scholar] [CrossRef]
- Mardianto, M.F.F.; Gunardi; Utami, H. An analysis about Fourier series estimator in nonparametric regression for longitudinal data. Math. Stats. 2021, 9, 501–510. [Google Scholar] [CrossRef]
- Amato, U.; Antoniadis, A.; De Feis, I. Fourier series approximation of separable models. J. Comput. Appl. Math. 2002, 146, 459–479. [Google Scholar] [CrossRef]
- Mariati, M.P.A.M.; Budiantara, I.N.; Ratnasari, V. The application of mixed smoothing spline and Fourier series model in nonparametric regression. Symmetry 2021, 13, 2094. [Google Scholar] [CrossRef]
- Aronszajn, N. Theory of reproducing kernels. Trans. Am. Math. Soc. 1950, 68, 337–404. [Google Scholar] [CrossRef]
- Kimeldorf, G.; Wahba, G. Some results on Tchebycheffian spline functions. J. Math. Anal. Appl. 1971, 33, 82–95. [Google Scholar] [CrossRef]
- Berlinet, A.; Thomas-Agnan, C. Reproducing Kernel Hilbert Spaces in Probability and Statistics; Kluwer Academic: Norwell, MA, USA, 2004. [Google Scholar]
- Paulsen, V.I. An Introduction to the Theory of Reproducing Kernel Hilbert Space. Research Report. 2009. Available online: https://www.researchgate.net/publication/255635687_AN_INTRODUCTION_TO_THE_THEORY_OF_REPRODUCING_KERNEL_HILBERT_SPACES (accessed on 24 March 2022).
- Yuan, M.; Cai, T.T. A reproducing kernel Hilbert space approach to functional linear regression. Ann. Stat. 2010, 38, 3412–3444. [Google Scholar] [CrossRef]
- Johnson, R.A.; Wichern, D.W. Applied Multivariate Statistical Analysis; Prentice Hall: New York, NY, USA, 1982. [Google Scholar]
- Ruppert, D.; Carroll, R. Penalized Regression Splines, Working Paper; School of Operation Research and Industrial Engineering, Cornell University: Ithaca, NY, USA, 1997. [Google Scholar]
- Wand, M.P.; Jones, M.C. Kernel Smoothing; Chapman & Hall: London, UK, 1995. [Google Scholar]
- Sen, P.K.; Singer, J.M. Large Sample in Statistics: An Introduction with Applications; Chapman & Hall: London, UK, 1993. [Google Scholar]
- Serfling, R.J. Approximation Theorems of Mathematical Statistics; John Wiley: New York, NY, USA, 1980. [Google Scholar]
K | MSE | Minimum GCV | λ | |
---|---|---|---|---|
1 | 1.02363794 | 0.5786323 | 0.95311712 | ; . |
2 | 2.20132482 | 2.0945904 | 0.90018631 | ; . |
3 | 2.09512311 | 2.17049788 | 0.90527677 | ; . |
4 | 2.03215324 | 2.10132858 | 0.90769321 | ; . |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chamidah, N.; Lestari, B.; Budiantara, I.N.; Aydin, D. Estimation of Multiresponse Multipredictor Nonparametric Regression Model Using Mixed Estimator. Symmetry 2024, 16, 386. https://doi.org/10.3390/sym16040386
Chamidah N, Lestari B, Budiantara IN, Aydin D. Estimation of Multiresponse Multipredictor Nonparametric Regression Model Using Mixed Estimator. Symmetry. 2024; 16(4):386. https://doi.org/10.3390/sym16040386
Chicago/Turabian StyleChamidah, Nur, Budi Lestari, I Nyoman Budiantara, and Dursun Aydin. 2024. "Estimation of Multiresponse Multipredictor Nonparametric Regression Model Using Mixed Estimator" Symmetry 16, no. 4: 386. https://doi.org/10.3390/sym16040386
APA StyleChamidah, N., Lestari, B., Budiantara, I. N., & Aydin, D. (2024). Estimation of Multiresponse Multipredictor Nonparametric Regression Model Using Mixed Estimator. Symmetry, 16(4), 386. https://doi.org/10.3390/sym16040386