Next Article in Journal
An Improved Public Key Cryptographic Algorithm Based on Chebyshev Polynomials and RSA
Previous Article in Journal
Maximizing Four-Wave Mixing in Four-Subband Semiconductor Quantum Wells with Optimal-Shortcut Spatially Varying Control Fields
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Generalized Reynolds Operators on Hom-Lie Triple Systems

1
School of Mathematical Sciences, Guizhou Normal University, Guiyang 550025, China
2
School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550025, China
*
Author to whom correspondence should be addressed.
Symmetry 2024, 16(3), 262; https://doi.org/10.3390/sym16030262
Submission received: 4 February 2024 / Revised: 19 February 2024 / Accepted: 19 February 2024 / Published: 21 February 2024
(This article belongs to the Section Mathematics)

Abstract

:
In this paper, we first introduce the notion of generalized Reynolds operators on Hom-Lie triple systems associated to a representation and a 3-cocycle. Then, we develop a cohomology of generalized Reynolds operators on Hom-Lie triple systems. As applications, we use the first cohomology group to classify linear deformations and we study the obstruction class of an extendable order n deformation. Finally, we introduce and investigate Hom-NS-Lie triple system as the underlying structure of generalized Reynolds operators on Hom-Lie triple systems.

1. Introduction

Lie triple systems first appeared in Cartan’s work [1] on Riemannian geometry. Since then, Jacobson [2,3] has studied Lie triple systems from Jordan theory and quantum mechanics. Lie triple systems extend the classical theory of Lie algebras and Lie groups by introducing a trilinear product, capturing the interplay between three elements. Lie triple systems have found applications in diverse fields, such as quantum mechanics, differential geometry and numerical analysis of differential equations. As a Hom-type algebra [4] generalization of Lie triple systems, Hom-Lie triple systems were introduced by Yau in [5]. Furthermore, Ma et al. [6] established the cohomology, central extensions and deformations of Hom-Lie triple systems. Further research on Hom-Lie triple systems has been developed (see [7,8,9,10,11] and references cited therein).
The notion of Rota–Baxter operators on associative algebras was introduced by Baxter [12] in his study of the fluctuation theory. Subsequently, the notion of a relative Rota–Baxter operator (also called an O -operator) on a Lie algebra was independently introduced by Kupershmidt [13], to better understand the classical Yang–Baxter equation and related integrable systems. Recently, relative Rota–Baxter operators have been widely studied (see [14,15,16,17,18,19]). In addition, other operators related to (relative) Rota–Baxter operators are constantly emerging. Among them is the Reynolds operator, motivated by the work of Reynolds [20] on turbulence in fluid dynamics. Kampé de Fériet [21] created the notion of the Reynolds operator as a mathematical subject in general. Inspired by the twisted Poisson structure, Uchino [22] introduced generalized Reynolds operators on associative algebras, also known as twisted Rota–Baxter operators, and studied their relationship with NS-algebras.
In recent years, Das [23] introduced the cohomology of generalized Reynolds operators on associative algebras, and considered NS-algebras as the underlying structure motivated by Uchino’s work. Das also developed the notions of generalized Reynolds operators on Lie algebras and NS-Lie algebras in [24]. Generalized Reynolds operators on other algebraic structures have also been widely studied, including 3-Lie algebras [25,26], 3-Hom-Lie algebras [27], Hom-Lie algebras [28], Lie-Yamaguti algebras [29], Lie triple systems [29,30] and Lie supertriple systems [31].
Inspired by these works, we propose generalized Reynolds operators on Hom-Lie triple systems, we investigate the corresponding cohomology theory, which will be used to describe deformations, and we establish Hom-NS-Lie triple systems as the underlying structure in the present paper.
The paper is organized as follows. In Section 2, we recall some basic notions and facts about Hom-Lie triple systems. In Section 3, we introduce the notion of generalized Reynolds operators on a Lie triple system and we give some examples. In Section 4, we develop the cohomology of generalized Reynolds operators on Hom-Lie triple systems. In Section 5, we study linear deformations and higher-order deformations of generalized Reynolds operators on Hom-Lie triple systems via the cohomology theory. In Section 6, we introduce the notion of Hom-NS-Lie triple systems, which is the underlying algebraic structure of generalized Reynolds operators on Hom-Lie triple systems.
Throughout this paper, K denotes a field of characteristic zero. All the vector spaces and (multi)linear maps are taken over K .

2. Preliminaires

In this section, we will briefly recall representations and the cohomology of Hom-Lie triple systems from [5,6].
Definition 1 
([6]). (i) A Hom-Lie triple system (Hom-L.t.s.) is a triplet ( L , [ , , ] , α ) in which L is a vector space together with a trilinear operation [ , , ] : L × L × L L and a linear transformation α : L L , called the twisted map, satisfying α ( [ a , b , c ] ) = [ α ( a ) , α ( b ) , α ( c ) ] , such that
[ a , b , c ] + [ b , a , c ] = 0 ,
a , b , c [ a , b , c ] = 0 ,
[ α ( a ) , α ( b ) , [ x , y , z ] ] = [ [ a , b , x ] , α ( y ) , α ( z ) ] + [ α ( x ) , [ a , b , y ] , α ( z ) ] + [ α ( x ) , α ( y ) , [ a , b , z ] ] ,
where x , y , z , a , b L and a , b , c denotes the sum over the cyclic permutation of a , b , c —that is, a , b , c [ a , b , c ] = [ a , b , c ] + [ c , a , b ] + [ b , c , a ] . In particular, ( L , [ , , ] , α ) is called a regular Hom-Lie triple system if α is an invertible linear map.
(ii) Let J be a subspace of a Hom-Lie triple system ( L , [ , , ] , α ) . Then, J is called a subalgebra of L if α ( a ) J and [ a , b , c ] J , for a , b , c J .
(iii) A homomorphism between two Hom-Lie triple systems ( L 1 , [ , , ] 1 , α 1 ) and ( L 2 , [ , , ] 2 , α 2 ) is a linear map φ : L 1 L 2 satisfying
φ ( α 1 ( x ) ) = α 2 ( φ ( x ) ) , φ ( [ x , y , z ] 1 ) = [ φ ( x ) , φ ( y ) , φ ( z ) ] 2 , x , y , z L 1 .
Example 1. 
Let L be a two-dimensional vector space with a basis ε 1 , ε 2 . If we define a trilinear non-zero operation [ , , ] and a linear transformation α on L as follows:
[ ε 1 , ε 2 , ε 2 ] = [ ε 2 , ε 1 , ε 2 ] = ε 1 , α ( ε 1 ) = ε 1 , α ( ε 2 ) = ε 2 ,
then ( L , [ , , ] , α ) is a Hom-Lie triple system.
Example 2. 
A Lie triple system is a Hom-Lie triple system with α = id L .
Example 3. 
Let ( L , [ , ] , α ) be a Hom-Lie algebra—that is, it consists of a vector space L , a skew-symmetric bilinear map [ , ] : L × L L and a linear transformation α on L satisfying α ( [ x , y ] ) = [ α ( x ) , α ( y ) ] and x , y , z [ α ( x ) , [ y , z ] ] = 0 for x , y , z L . Then, ( L , [ , , ] , α ) is a Hom-Lie triple system, where [ x , y , z ] = [ α ( x ) , [ y , z ] ] , x , y , z L .
Note that Yamaguti [32] introduced the representation and cohomology theory of Lie triple systems. Furthermore, based on Yamaguti’s work, the authors in [6] developed the representation and cohomology theory of Hom-Lie triple systems, which can be described as follows.
Definition 2 
([6]). A representation of a Hom-Lie triple system ( L , [ , , ] , α ) on a Hom-vector space ( V , β ) is a bilinear map θ : L × L End ( V ) , such that for all x , y , a , b L
θ ( α ( x ) , α ( y ) ) β = β θ ( x , y ) ,
θ ( α ( a ) , α ( b ) ) θ ( x , y ) θ ( α ( y ) , α ( b ) ) θ ( x , a ) θ ( α ( x ) , [ y , a , b ] ) β + D ( α ( y ) , α ( a ) ) θ ( x , b ) = 0 ,
θ ( α ( a ) , α ( b ) ) D ( x , y ) D ( α ( x ) , α ( y ) ) θ ( a , b ) + θ ( [ x , y , a ] , α ( b ) ) β + θ ( α ( a ) , [ x , y , b ] ) β = 0 ,
where D ( x , y ) = θ ( y , x ) θ ( x , y ) . We also denote a representation of L on ( V , β ) by ( V , β ; θ ) . In particular, ( V , β ; θ ) is called a regular representation of L if β is an invertible linear map on the vector space V.
Example 4. 
Let ( L , [ , , ] , α ) be a Hom-Lie triple system. Define bilinear map
R : L × L End ( L ) , ( a 1 , a 2 ) ( x [ x , a 1 , a 2 ] ) ,
with L ( a 1 , a 2 ) ( x ) = R ( a 2 , a 1 ) x R ( a 1 , a 2 ) x = [ a 1 , a 2 , x ] . Then, ( L , α ; R ) is a representation of the Hom-Lie triple system L , which is called the adjoint representation of L .
Let ( V , β ; θ ) be a representation of a Hom-Lie triple system ( L , [ , , ] , α ) . Denote the ( 2 n + 1 ) -cochains of L with coefficients in representation ( V , β ; θ ) by
C HLts 2 n + 1 ( L , V ) : = { f Hom ( L 2 n + 1 , V ) | β ( f ( a 1 , , a 2 n + 1 ) = f ( α ( a 1 ) , , α ( a 2 n + 1 ) ) , f ( a 1 , , a 2 n 2 , a , b , c ) + f ( a 1 , , a 2 n 2 , b , a , c ) = 0 , a , b , c f ( a 1 , , a 2 n 2 , a , b , c ) = 0 } .
For n 1 , let δ : C HLts 2 n 1 ( L , V ) C HLts 2 n + 1 ( L , V ) be the corresponding coboundary operator of the Hom-Lie triple system ( L , [ , , ] , α ) with coefficients in the representation ( V , β ; θ ) , More precisely, for a 1 , , a 2 n + 1 L and f C HLts 2 n 1 ( L , V ) as
δ f ( a 1 , , a 2 n + 1 ) = θ ( α n 1 ( a 2 n ) , α n 1 ( a 2 n + 1 ) ) f ( a 1 , , a 2 n 1 ) θ ( α n 1 ( a 2 n 1 ) , α n 1 ( a 2 n + 1 ) ) f ( a 1 , , a 2 n 2 , a 2 n ) + i = 1 n ( 1 ) i + n D ( α n 1 ( a 2 i 1 ) , α n 1 ( a 2 i ) ) f ( a 1 , , a 2 i 2 , a 2 i + 1 , , a 2 n + 1 ) + i = 1 n j = 2 i + 1 2 n + 1 ( 1 ) i + n + 1 f ( α ( a 1 ) , , α ( a 2 i 2 ) , α ( a 2 i + 1 ) , , [ a 2 i 1 , a 2 i , a j ] , , α ( a 2 n + 1 ) ) .
So, δ δ = 0 . See [6] for more details.
In particular, for f C HLts 1 ( L , V ) , f is a 1-cocycle on ( L , [ , , ] , α ) with coefficients in ( V , β ; θ ) if δ f = 0 , i.e.,
θ ( a 2 , a 3 ) f ( a 1 ) θ ( a 1 , a 3 ) f ( a 2 ) + D ( a 1 , a 2 ) f ( a 3 ) f ( [ a 1 , a 2 , a 3 ] ) = 0 .
A 3-cochain H C HLts 3 ( L , V ) is a 3-cocycle on ( L , [ , , ] , α ) with coefficients in ( V , β ; θ ) if δ H = 0 , i.e.,
θ ( α ( a 4 ) , α ( a 5 ) ) H ( a 1 , a 2 , a 3 ) θ ( α ( a 3 ) , α ( a 5 ) ) H ( a 1 , a 2 , a 4 ) D ( α ( a 1 ) , α ( a 2 ) ) H ( a 3 , a 4 , a 5 ) + D ( α ( a 3 ) , α ( a 4 ) ) H ( a 1 , a 2 , a 5 ) + H ( [ a 1 , a 2 , a 3 ] , α ( a 4 ) , α ( a 5 ) ) + H ( α ( a 3 ) , [ a 1 , a 2 , a 4 ] , α ( a 5 ) ) + H ( α ( a 3 ) , α ( a 4 ) , [ a 1 , a 2 , a 5 ] ) H ( α ( a 1 ) , α ( a 2 ) , [ a 3 , a 4 , a 5 ] ) = 0 .

3. Generalized Reynolds Operators on Hom-Lie Triple Systems

In this section, we introduce the notion of generalized Reynolds operators on Hom-Lie triple systems, which can be regarded as the generalization of relative Rota–Baxter operators on Hom-Lie triple systems [17,19] and generalized Reynolds operators on Lie triple systems [29,30]. We give its characterization by a graph and provide some examples.
Definition 3. 
(i) Let ( L , [ , , ] , α ) be a Hom-Lie triple system and ( V , β ; θ ) be a representation of L . A linear operator R : V L is called a generalized Reynolds operator on a Hom-Lie triple system associated to ( V , β ; θ ) and 3-cocycle H if R satisfies:
α ( R u ) = R β ( u ) ,
[ R u , R v , R w ] = R ( θ ( R v , R w ) u + D ( R u , R v ) w θ ( R u , R w ) v + H ( R u , R v , R w ) ) ,
where u , v , w V .
(ii) A morphism of generalized Reynolds operators from R to R consists of a pair ( η , ζ ) of a Hom-Lie triple system morphism η : ( L , [ , , ] , α ) ( L , [ , , ] , α ) and a linear map ζ : V V satisfying
α η = η α , β ζ = ζ β ,
η R = R ζ ,
ζ ( θ ( a , b ) u ) = θ ( η ( a ) , η ( b ) ) ζ ( u ) ,
ζ ( H ( a , b , c ) ) = H ( η ( a ) , η ( b ) , η ( c ) ) ,
for a , b , c L , u V .
Remark 1. 
(i) A generalized Reynolds operator R on Hom-Lie triple system ( L , [ , , ] , α ) with α = id is nothing but a generalized Reynolds operator R on Lie triple system ( L , [ , , ] ) . See [29,30] for more details about generalized Reynolds operators on Lie triple systems.
(ii) Any relative Rota–Baxter operator (in particular, a Rota–Baxter operator of weight 0) on a Hom-Lie triple system is a generalized Reynolds operator with H = 0 . See [17,19] for more details about relative Rota–Baxter operators on Hom-Lie triple systems.
Example 5. 
Let ( V , β ; θ ) be a representation of a Hom-Lie triple system ( L , [ , , ] , α ) . Suppose that f : L V is an invertible linear map and f satisfies β f = f α , take H = δ f . Then, R = f 1 : V L is a generalized Reynolds operator.
Example 6. 
In [9], Hou, Ma and Chen introduced the notion of the Nijenhuis operator by the 2-order deformation of Hom-Lie triple system ( L , [ , , ] , α ) . More precisely, a linear map N : L L is called a Nijenhuis operator if for all a , b , c L the following equations hold:
N α = α N , [ N a , N b , N c ] = N ( [ a , N b , N c ] + [ N a , b , N c ] + [ N a , N b , c ] ) N 2 ( [ N a , b , c ] + [ a , N b , c ] + [ a , b , N c ] ) + N 3 [ a , b , c ] .
In this case, the Hom vector space ( L , α ) carries a new Hom-Lie triple-system structure with bracket
[ a , b , c ] N = [ a , N b , N c ] + [ N a , b , N c ] + [ N a , N b , c ] N ( [ N a , b , c ] + [ a , N b , c ] + [ a , b , N c ] ) + N 2 [ a , b , c ] , a , b , c L .
This deformed Hom-Lie triple system L N = ( L , [ , , ] N , α ) has a representation on ( L , α ) by θ N ( a , b ) c = [ c , N a , N b ] for a , b L N , c L . The map H : L N × L N × L N L , H ( a , b , c ) = N ( [ N a , b , c ] + [ a , N b , c ] + [ a , b , N c ] ) + N 2 [ a , b , c ] is a 3-cocycle with coefficients in ( L , α ; θ N ) . Moreover, the identity map i d : L L N is a generalized Reynolds operator.
Example 7. 
Let ( L , [ , , ] , α ) be a Hom-Lie triple system and ( L , α ; R ) the adjoint representation. Set the 3-cocycle H ( a , b , c ) = [ a , b , c ] , for a , b , c L ; then, a linear operator T : L L defined by Equations (8) and (9) is called a Reynolds operator on ( L , [ , , ] , α ) . More specifically, T satisfies:
α ( T a ) = T α ( a ) , [ T a , T b , T c ] = T ( [ T a , T b , c ] + [ a , T b , T c ] + [ T a , b , T c ] [ T a , T b , T c ] ) ,
where a , b , c L .
Example 8. 
Let D : L L be a derivation on a Hom-Lie triple system ( L , [ , , ] , α ) . If D + 1 2 i d is invertible, then ( D + 1 2 i d ) 1 is a Reynolds operator on ( L , [ , , ] , α ) .
Given a 3-cocycle H in the cochain complex of L with coefficients in V, one can construct the twisted-semidirect-product Hom-Lie triple system. More precisely, the direct sum L V carries a Hom-Lie triple-system structure with the bracket given by
[ a + u , b + v , c + w ] H = [ a , b , c ] + D ( a , b ) w θ ( a , c ) v + θ ( b , c ) u + H ( a , b , c ) , ( α β ) ( a + u ) = α ( a ) + β ( u ) , a , b , c L , u , v , w V .
We denote this twisted-semidirect-product Hom-Lie triple system by L H V .
Proposition 1. 
A linear map R : V L is a generalized Reynolds operator on L if and only if the graph of R
G r ( R ) = { R u + u | u V }
is a subalgebra of the twisted-semidirect-product Hom-Lie triple system by L H V .
Proof. 
Let R : V L be a linear map; then, for any u , v , w V , we have
α β ( R u + u ) = α R ( u ) + β ( u ) , [ R u + u , R v + R w + w ] H = [ R u , R v , R w ] + D ( R u , R v ) w θ ( R u , R w ) v + θ ( R v , R w ) u + H ( R u , R v , R w ) ,
which implies that the graph G r ( R ) is a subalgebra of the twisted-semidirect-product Hom-Lie triple system L H V if and only if R satisfies Equations (8) and (9), which means that R is a generalized Reynolds operator. □
G r ( R ) is isomorphic to V as a vector space. Define a trilinear operation on V by
[ u , v , w ] R = D ( R u , R v ) w θ ( R u , R w ) v + θ ( R v , R w ) u + H ( R u , R v , R w ) ,
for all u , v , w V . By Proposition 1, we ascertain that ( V , [ , , ] R , β ) is a Hom-Lie triple system. Moreover, R is a homomorphism of Hom-Lie triple systems from ( V , [ , , ] R , β ) to ( L , [ , , ] , α ) .

4. Cohomology of Generalized Reynolds Operators on Hom-Lie Triple Systems

In this section, first, we construct a representation of the Hom-Lie triple system ( V , [ , , ] R , β ) on the Hom-vector space ( L , α ) . Then, we develop a cohomology theory of generalized Reynolds operators on Hom-Lie triple systems.
Lemma 1. 
Let R : V L be a generalized Reynolds operator on a Hom-Lie triple system ( L , [ , , ] , α ) associated to ( V , β ; θ ) and 3-cocycle H . For any u , v V , a L , define θ R : V V End ( L ) by
θ R ( u , v ) ( a ) = [ a , R u , R v ] + R ( θ ( a , R v ) u D ( a , R u ) v H ( a , R u , R v ) ) ;
then, ( L , α ; θ R ) is a representation of the Hom-Lie triple system ( V , [ , , ] R , β ) .
Proof. 
For any u , v , s , t V , a L , note that
D R ( u , v ) ( a ) = θ R ( v , u ) ( a ) θ R ( u , v ) ( a ) = [ a , R v , R u ] + R ( θ ( a , R u ) v D ( a , R v ) u H ( a , R v , R u ) ) [ a , R u , R v ] R ( θ ( a , R v ) u D ( a , R u ) v H ( a , R u , R v ) ) = [ R u , R v , a ] + R ( θ ( R u , a ) v θ ( R v , a ) u H ( R u , R v , a ) ) .
Further, we obtain
θ R ( β ( u ) , β ( v ) ) α ( a ) ( by Equations ( 4 ) , ( 8 ) and ( 15 ) ) = [ α ( a ) , R β ( u ) , R β ( v ) ] + R ( θ ( α ( a ) , R β ( v ) ) β ( u ) D ( α ( a ) , R β ( u ) ) β ( v ) H ( α ( a ) , R β ( u ) , R β ( v ) ) ) = [ α ( a ) , α ( R u ) , α ( R v ) ] + R ( θ ( α ( a ) , α ( R v ) ) β ( u ) D ( α ( a ) , α ( R u ) ) β ( v ) H ( α ( a ) , α ( R u ) , α ( R v ) ) ) = α ( [ a , R u , R v ] + R ( θ ( a , R v ) u D ( a , R u ) v H ( a , R u , R v ) ) ) = α ( θ R ( u , v ) ( a ) ) ,
θ R ( β ( u ) , β ( v ) ) θ R ( s , t ) a θ R ( β ( t ) , β ( v ) ) θ R ( s , u ) a θ R ( β ( s ) , [ t , u , v ] R ) α ( a ) + D R ( β ( t ) , β ( u ) ) θ R ( s , v ) a ( by Equations ( 8 ) , ( 9 ) and ( 14 ) ( 16 ) ) = θ R ( β ( u ) , β ( v ) ) [ a , R s , R t ] + R ( θ ( a , R t ) s D ( a , R s ) t H ( a , R s , R t ) ) θ R ( β ( t ) , β ( v ) ) [ a , R s , R u ] + R ( θ ( a , R u ) s D ( a , R s ) u H ( a , R s , R u ) ) [ α ( a ) , R β ( s ) , R [ t , u , v ] R ] R ( θ ( α ( a ) , R [ t , u , v ] R ) β ( s ) D ( α ( a ) , R β ( s ) ) [ t , u , v ] R H ( α ( a ) , R β ( s ) , R [ t , u , v ] R ) ) + D R ( β ( t ) , β ( u ) ) [ a , R s , R v ] + R ( θ ( a , R v ) s D ( a , R s ) v H ( a , R s , R v ) ) = ( [ [ a , R s , R t ] , α ( R u ) , α ( R v ) ] [ [ a , R s , R u ] , α ( R t ) , α ( R v ) ] + [ α ( R t ) , α ( R u ) , [ a , R s , R v ] ] [ α ( a ) , α ( R s ) , [ R t , R u , R v ] ] ) + R ( θ ( α ( R t ) , α ( R v ) ) H ( a , R s , R u ) θ ( α ( R u ) , α ( R v ) ) H ( a , R s , R t ) + D ( α ( R u ) , α ( R t ) ) H ( a , R s , R v ) + D ( α ( a ) , α ( R s ) ) H ( R t , R u , R v ) + H ( α ( a ) , α ( R s ) , [ R t , R u , R v ] ) + θ ( α ( R u ) , α ( R v ) ) θ ( a , R t ) s θ ( α ( R u ) , α ( R v ) ) D ( a , R s ) t θ ( α ( R t ) , α ( R v ) ) θ ( a , R u ) s + θ ( α ( R t ) , α ( R v ) ) D ( a , R s ) u + D ( α ( a ) , α ( R s ) ) θ ( R u , R v ) t D ( α ( a ) , α ( R s ) ) θ ( R t , R v ) u + D ( α ( a ) , α ( R s ) ) D ( R t , R u ) v θ ( α ( a ) , [ R t , R u , R v ] ) β ( s ) + D ( α ( R t ) , α ( R u ) ) θ ( a , R v ) s + D ( α ( R u ) , α ( R v ) ) D ( a , R s ) t D ( [ a , R s , R t ] , α ( R u ) ) β ( v ) + D ( [ a , R s , R t ] , α ( R v ) ) β ( u ) + θ ( [ a , R s , R t ] , α ( R v ) ) β ( u ) θ ( [ a , R s , R u ] , α ( R v ) ) β ( t ) D ( [ a , R s , R v ] , α ( R u ) ) β ( t ) + θ ( α ( R t ) , [ a , R s , R v ] ) β ( u ) + D ( [ a , R s , R v ] , α ( R t ) ) β ( u ) θ ( α ( R u ) , [ a , R s , R v ] ) β ( t ) ) ( by Equations ( 5 ) and ( 6 ) ) = ( [ [ a , R s , R t ] , α ( R u ) , α ( R v ) ] [ [ a , R s , R u ] , α ( R t ) , α ( R v ) ] + [ α ( R t ) , α ( R u ) , [ a , R s , R v ] ] [ α ( a ) , α ( R s ) , [ R t , R u , R v ] ] ) + R ( θ ( α ( R t ) , α ( R v ) ) H ( a , R s , R u ) θ ( α ( R u ) , α ( R v ) ) H ( a , R s , R t ) + D ( α ( R u ) , α ( R t ) ) H ( a , R s , R v ) + D ( α ( a ) , α ( R s ) ) H ( R t , R u , R v ) + H ( α ( a ) , α ( R s ) , [ R t , R u , R v ] ) H ( [ a , R s , R t ] , α ( R u ) , α ( R v ) ) H ( α ( R t ) , [ a , R s , R u ] , α ( R v ) ) H ( α ( R t ) , α ( R u ) , [ a , R s , R v ] ) ) ( by Equations ( 3 ) and ( 7 ) ) = 0 .
Similarly, we also have
θ R ( β ( u ) , β ( v ) ) D R ( s , t ) a D R ( β ( s ) , β ( t ) ) θ R ( u , v ) a + θ R ( [ s , t , u ] R , β ( v ) ) α ( a ) + θ R ( β ( u ) , [ s , t , v ] R ) α ( a ) = 0 .
Therefore, ( L , α ; θ R ) is a representation of ( V , [ , , ] R , β ) . □
Let R : V L be a generalized Reynolds operator on a Hom-Lie triple system ( L , [ , , ] , α ) associated to ( V , β ; θ ) and 3-cocycle H . Recall that Lemma 1 gives a representation ( L , α ; θ R ) of the Hom-Lie triple system ( V , [ , , ] R , β ) . Consider the cochain complex of ( V , [ , , ] R , β ) with coefficients in ( L , α ; θ R ) :
( n = 1 C R 2 n 1 ( V , L ) , δ R ) .
More precisely,
C R 2 n + 1 ( V , L ) : = { f Hom ( V 2 n + 1 , L ) | α ( f ( v 1 , , v 2 n + 1 ) ) = f ( β ( v 1 ) , , β ( v 2 n + 1 ) ) , f ( v 1 , , v 2 n 2 , u , v , w ) + f ( v 1 , , v 2 n 2 , v , u , w ) = 0 , u , v , w f ( v 1 , , v 2 n 2 , u , v , w ) = 0 } ,
and its coboundary map δ R : C R 2 n 1 ( V , L ) C R 2 n + 1 ( V , L ) is given as follows:
δ R f ( v 1 , , v 2 n + 1 ) = θ R ( β n 1 ( v 2 n ) , β n 1 ( v 2 n + 1 ) ) f ( v 1 , , v 2 n 1 ) θ R ( β n 1 ( v 2 n 1 ) , β n 1 ( v 2 n + 1 ) ) f ( v 1 , , v 2 n 2 , v 2 n ) + i = 1 n ( 1 ) i + n D R ( β n 1 ( v 2 i 1 ) , β n 1 ( v 2 i ) ) f ( v 1 , , v 2 i 2 , v 2 i + 1 , , v 2 n + 1 ) + i = 1 n j = 2 i + 1 2 n + 1 ( 1 ) i + n + 1 f ( β ( v 1 ) , , β ( v 2 i 2 ) , β ( v 2 i + 1 ) , , [ v 2 i 1 , v 2 i , v j ] R , , β ( v 2 n + 1 ) ) .
for any v 1 , , v 2 n + 1 V and f C R 2 n 1 ( V , L ) .
In particular, for f C R 1 ( V , L ) = { f Hom ( V , L ) | α f = f β } , v 1 , v 2 , v 3 V , we have
δ R f ( v 1 , v 2 , v 3 ) = θ R ( v 2 , v 3 ) f ( v 1 ) θ R ( v 1 , v 3 ) f ( v 2 ) + D R ( v 1 , v 2 ) f ( v 3 ) f ( [ v 1 , v 2 , v 3 ] R ) .
Next, when n = 0 , in order to get the first cohomology group of the generalized Reynolds operator R, we need additional conditions; that is, the Hom-Lie triple system is regular, and its representation is also regular. In the next section, we will use the first cohomology group to classify the linear deformation of generalized Reynolds operators; see Proposition 3.
For any ( a , b ) C R 0 ( V , L ) : = { ( a , b ) 2 L | α ( a ) = a , α ( b ) = b } , we define δ R : C R 0 ( V , L ) C R 1 ( V , L ) , ( a , b ) ( a , b ) by
( a , b ) u = R D ( a , b ) β 1 ( u ) [ a , b , R β 1 ( u ) ] + R H ( a , b , R β 1 ( u ) ) , u V
where β is an invertible linear map on the vector space V.
Proposition 2. 
Let R : V L be a generalized Reynolds operator on a regular Hom-Lie triple system ( L , [ , , ] , α ) associated to regular representation ( V , β ; θ ) and 3-cocycle H . Then, δ R ( ( a , b ) ) = 0 ; that is, the composition C R 0 ( V , L ) δ R C R 1 ( V , L ) δ R C R 3 ( V , L ) is the zero map.
Proof. 
For any v 1 , v 2 , v 3 V , first, evidently α ( ( a , b ) ( v 1 ) ) = ( a , b ) ( β ( v 1 ) ) . Next, we have
δ R ( a , b ) ( v 1 , v 2 , v 3 ) ( by Equations ( 4 ) , ( 8 ) , ( 9 ) and ( 14 ) ( 16 ) ) = θ R ( v 2 , v 3 ) ( a , b ) ( v 1 ) θ R ( v 1 , v 3 ) ( a , b ) ( v 2 ) + D R ( v 1 , v 2 ) ( a , b ) ( v 3 ) ( a , b ) ( [ v 1 , v 2 , v 3 ] R ) = θ R ( v 2 , v 3 ) R D ( a , b ) β 1 ( v 1 ) θ R ( v 2 , v 3 ) [ a , b , R β 1 ( v 1 ) ] + θ R ( v 2 , v 3 ) R H ( a , b , R β 1 ( v 1 ) ) θ R ( v 1 , v 3 ) R D ( a , b ) β 1 ( v 2 ) + θ R ( v 1 , v 3 ) [ a , b , R β 1 ( v 2 ) ] θ R ( v 1 , v 3 ) R H ( a , b , R β 1 ( v 2 ) ) + D R ( v 1 , v 2 ) R D ( a , b ) β 1 ( v 3 ) D R ( v 1 , v 2 ) [ a , b , R β 1 ( v 3 ) ] + D R ( v 1 , v 2 ) R H ( a , b , R β 1 ( v 3 ) ) R D ( a , b ) β 1 ( [ v 1 , v 2 , v 3 ] R ) + [ a , b , R β 1 ( [ v 1 , v 2 , v 3 ] R ) ] R H ( a , b , R β 1 ( [ v 1 , v 2 , v 3 ] R ) ) = α 1 ( [ R D ( a , b ) v 1 , α ( R v 2 ) , ( R v 3 ) ] + R θ ( R D ( a , b ) v 1 , α ( R v 3 ) ) β ( v 2 ) R D ( R D ( a , b ) v 1 , α ( R v 2 ) ) β ( v 3 ) R H ( R D ( a , b ) v 1 , α ( R v 2 ) , α ( R v 3 ) ) [ [ a , b , R v 1 ] , α ( R v 2 ) , α ( R v 3 ) ] R θ ( [ a , b , R v 1 ] , α ( R v 3 ) ) β ( v 2 ) + R D ( [ a , b , R v 1 ] , α ( R v 2 ) ) β ( v 3 ) + R H ( [ a , b , R v 1 ] , α ( R v 2 ) , α ( R v 3 ) ) + [ R H ( a , b , R v 1 ) , α ( R v 2 ) , α ( R v 3 ) ] + R θ ( R H ( a , b , R v 1 ) , α ( R v 3 ) ) β ( v 2 ) R D ( R H ( a , b , R v 1 ) , α ( R v 2 ) ) β ( v 3 ) R H ( R H ( a , b , R v 1 ) , α ( R v 2 ) , α ( R v 3 ) ) [ R D ( a , b ) v 2 , α ( R v 1 ) , α ( R v 3 ) ] R θ ( R D ( a , b ) v 2 , α ( R v 3 ) ) β ( v 1 ) + R D ( R D ( a , b ) v 2 , α ( R v 1 ) ) β ( v 3 ) + R H ( R D ( a , b ) v 2 , α ( R v 1 ) , α ( R v 3 ) ) + [ [ a , b , R v 2 ] , α ( R v 1 ) , α ( R v 3 ) ] + R θ ( [ a , b , R v 2 ] , α ( R v 3 ) ) β ( v 1 ) R D ( [ a , b , R v 2 ] , α ( R v 1 ) ) β ( v 3 ) R H ( [ a , b , R v 2 ] , α ( R v 1 ) , α ( R v 3 ) ) [ R H ( a , b , R v 2 ) , α ( R v 1 ) , α ( R v 3 ) ] R θ ( R H ( a , b , R v 2 ) , α ( R v 3 ) ) β ( v 1 ) + R D ( R H ( a , b , R v 2 ) , α ( R v 1 ) ) β ( v 3 ) + R H ( R H ( a , b , R v 2 ) , α ( R v 1 ) , α ( R v 3 ) ) + [ α ( R v 1 ) , α ( R v 2 ) , R D ( a , b ) v 3 ] + R θ ( α ( R v 1 ) , R D ( a , b ) v 3 ) β ( v 2 ) R θ ( α ( R v 2 ) , R D ( a , b ) v 3 ) β ( v 1 ) R H ( α ( R v 1 ) , α ( R v 2 ) , R D ( a , b ) v 3 ) [ α ( R v 1 ) , α ( R v 2 ) , [ a , b , R v 3 ] ] R θ ( α ( R v 1 ) , [ a , b , R v 3 ] ) β ( v 2 ) + R θ ( α ( R v 2 ) , [ a , b , R v 3 ] ) β ( v 1 ) + R H ( α ( R v 1 ) , α ( R v 2 ) , [ a , b , R v 3 ] ) + [ α ( R v 1 ) , α ( R v 2 ) , R H ( a , b , R v 3 ) ] + R θ ( α ( R v 1 ) , R H ( a , b , R v 3 ) ) β ( v 2 ) R θ ( α ( R v 2 ) , R H ( a , b , R v 3 ) ) β ( v 1 ) R H ( α ( R v 1 ) , α ( R v 2 ) , R H ( a , b , R v 3 ) ) R D ( a , b ) D ( R v 1 , R v 2 ) v 3 + R D ( a , b ) θ ( R v 1 , R v 3 ) v 2 R D ( a , b ) θ ( R v 2 , R v 3 ) v 1 R D ( a , b ) H ( R v 1 , R v 2 , R v 3 ) + [ a , b , [ R v 1 , R v 2 , R v 3 ] ] R H ( a , b , [ R v 1 , R v 2 , R v 3 ] ) ) ( by Equations ( 9 ) and ( 14 ) ) = α 1 ( ( [ [ a , b , R v 1 ] , α ( R v 2 ) , α ( R v 3 ) ] + [ [ a , b , R v 2 ] , α ( R v 1 ) , α ( R v 3 ) ] [ α ( R v 1 ) , α ( R v 2 ) , [ a , b , R v 3 ] ] + [ a , b , [ R v 1 , R v 2 , R v 3 ] ] ) + R ( D ( α ( R v 1 ) , α ( R v 2 ) ) H ( a , b , R v 3 ) θ ( α ( R v 1 ) , α ( R v 3 ) ) H ( a , b , R v 2 ) + H ( [ a , b , R v 1 ] , α ( R v 2 ) , α ( R v 3 ) ) + H ( α ( R v 1 ) , α ( R v 2 ) , [ a , b , R v 3 ] ) H ( a , b , [ R v 1 , R v 2 , R v 3 ] ) D ( a , b ) H ( R v 1 , R v 2 , R v 3 ) + θ ( α ( R v 2 ) , α ( R v 3 ) ) D ( a , b ) v 1 θ ( α ( R v 1 ) , α ( R v 3 ) ) D ( a , b ) v 2 + D ( α ( R v 1 ) , α ( R v 2 ) ) D ( a , b ) v 3 + D ( [ a , b , R v 1 ] , α ( R v 2 ) ) β ( v 3 ) θ ( [ a , b , R v 1 ] , α ( R v 3 ) ) β ( v 2 ) D ( [ a , b , R v 2 ] , α ( R v 1 ) ) β ( v 3 ) + θ ( [ a , b , R v 2 ] , α ( R v 3 ) ) β ( v 1 ) + H ( α ( R v 1 ) , [ a , b , R v 2 ] , α ( R v 3 ) ) + θ ( α ( R v 2 ) , [ a , b , R v 3 ] ) β ( v 1 ) θ ( α ( R v 1 ) , [ a , b , R v 3 ] ) β ( v 2 ) D ( a , b ) θ ( R v 2 , R v 3 ) v 1 + D ( a , b ) θ ( R v 1 , R v 3 ) v 2 D ( a , b ) D ( R v 1 , R v 2 ) v 3 ) ) ( by Equations ( 3 ) and ( 7 ) ) = α 1 ( R ( θ ( α ( R v 2 ) , α ( R v 3 ) ) D ( a , b ) v 1 θ ( α ( R v 1 ) , α ( R v 3 ) ) D ( a , b ) v 2 + D ( α ( R v 1 ) , α ( R v 2 ) ) D ( a , b ) v 3 + D ( [ a , b , R v 1 ] , α ( R v 2 ) ) β ( v 3 ) θ ( [ a , b , R v 1 ] , α ( R v 3 ) ) β ( v 2 ) D ( [ a , b , R v 2 ] , α ( R v 1 ) ) β ( v 3 ) + θ ( [ a , b , R v 2 ] , α ( R v 3 ) ) β ( v 1 ) + θ ( α ( R v 2 ) , [ a , b , R v 3 ] ) β ( v 1 ) θ ( α ( R v 1 ) , [ a , b , R v 3 ] ) β ( v 2 ) D ( a , b ) θ ( R v 2 , R v 3 ) v 1 + D ( a , b ) θ ( R v 1 , R v 3 ) v 2 D ( a , b ) D ( R v 1 , R v 2 ) v 3 ) ) ( by Equations ( 4 ) and ( 5 ) ) = 0 .
Therefore, δ R ( a , b ) = 0 .
Definition 4. 
Let R : V L be a generalized Reynolds operator on a Hom-Lie triple system ( L , [ , , ] , α ) associated to ( V , β ; θ ) and 3-cocycle H . Then, the cochain complex ( C R ( V , L ) , δ R ) = ( n = 1 + C R 2 n 1 ( V , L ) C R 0 ( V , L ) , δ R ) is called the cochain complex of the generalized Reynolds operator R.
The set
Z R 2 n 1 ( V , L ) = { f C R 2 n 1 ( V , L ) | δ R f = 0 } , n 1
is called the space of ( 2 n 1 ) -cocycles of R.
The set
B R 1 ( V , L ) = { δ R ( a , b ) | ( a , b ) C R 0 ( V , L ) }
is called the space of 1-coboundaries of R.
The set
B R 2 n 1 ( V , L ) = { δ R f | f C R 2 n 3 ( V , L ) } , n 2
is called the space of ( 2 n 1 ) -coboundaries of R.
Then, the ( 2 n 1 ) -th cohomology group of the generalized Reynolds operator R are defined as
H R 2 n 1 ( V , L ) = Z R 2 n 1 ( V , L ) B R 2 n 1 ( V , L ) , n 1 .
Remark 2. 
The cohomology theory for generalized Reynolds operators on Hom-Lie triple systems enjoys certain functorial properties. Let R , R : V L be two generalized Reynolds operators on a Hom-Lie triple system ( L , [ , , ] , α ) associated to ( V , β ; θ ) and 3-cocycle H , and let ( η , ζ ) be a homomorphism from R to R , in which ζ is invertible. Define a linear map Φ : C R 2 n 1 ( V , L ) C R 2 n 1 ( V , L ) by
Φ ( f ) ( v 1 , , v 2 n 1 ) = η ( f ( ζ 1 ( v 1 ) , , ζ 1 ( v 2 n 1 ) ) ) ,
for any f C R 2 n 1 ( V , L ) and v 1 , , v 2 n 1 V . Then, it is straightforward to deduce that Φ is a cochain map from the cochain complex ( n = 1 C R 2 n 1 ( V , L ) , δ R ) to the cochain complex ( n = 1 C R 2 n 1 ( V , L ) , δ R ) . Consequently, it induces a homomorphism Φ from the cohomology group H R 2 n 1 ( V , L ) to H R 2 n 1 ( V , L ) .

5. Deformations of Generalized Reynolds Operators on Hom-Lie Triple Systems

In this section, we study linear deformations and higher order deformations of generalized Reynolds operators on Hom-Lie triple systems via the cohomology theory established in the former section.
First, we use the cohomology constructed to characterize the linear deformations of generalized Reynolds operators on Hom-Lie triple systems.
Definition 5. 
Let R : V L be a generalized Reynolds operator on a Hom-Lie triple system ( L , [ , , ] , α ) associated to ( V , β ; θ ) and 3-cocycle H . A linear deformation of R is a generalized Reynolds operator of the form R t = R + t R 1 , where R 1 : V L is a linear map and t is a parameter.
Suppose R + t R 1 is a linear deformation of R; direct deduction shows that R 1 C R 1 ( V , L ) is a 1-cocycle of the generalized Reynolds operator R. So the cohomology class of R 1 defines an element in H R 1 ( V , L ) . Furthermore, the 1-cocycle R 1 is called the infinitesimal of the linear deformation R t of R.
Definition 6. 
Let R : V L be a generalized Reynolds operator on a regular Hom-Lie triple system ( L , [ , , ] , α ) associated to regular representation ( V , β ; θ ) and 3-cocycle H . Two linear deformations R t = R + t R 1 and R t = R + t R 1 are called equivalent if there exist two elements a , b L , such that α ( a ) = a , α ( b ) = b and the pair ( I d L + t α 1 ( L ( a , b ) ) , I d V + t β 1 ( D ( a , b ) ) + t β 1 ( H ( a , b , R ) ) ) is a homomorphism from R t to R t .
Suppose R t and R t are equivalent; then, Equation (11) yields
( I d L + t α 1 ( L ( a , b ) ) ) R t u = R t ( I d V + t β 1 ( D ( a , b ) ) + t β 1 ( H ( a , b , R ) ) ) u , u V ,
which means that
R 1 u R 1 u = R β 1 ( D ( a , b ) u ) α 1 ( [ a , b , R u ] ) + R β 1 ( H ( a , b , R u ) ) = R D ( a , b ) β 1 ( u ) [ a , b , R β 1 ( u ) ] + R H ( a , b , R β 1 ( u ) ) .
By Proposition 2, we have R 1 R 1 = ( a , b ) = δ R ( a , b ) B R 1 ( V , L ) . So their cohomology classes are the same in H R 1 ( V , L ) .
Conversely, any 1-cocycle R 1 gives rise to the linear deformation R + t R 1 . To sum up, we have the following result.
Proposition 3. 
Let R : V L be a generalized Reynolds operator on a regular Hom-Lie triple system ( L , [ , , ] , α ) associated to regular representation ( V , β ; θ ) and 3-cocycle H . Then, there is a bijection between the set of all equivalence classes of linear deformation of R and the first cohomology group H R 1 ( V , L ) .
Next, we introduce a special cohomology class associated to an order n deformation of a generalized Reynolds operator, and show that an order n deformation of a generalized Reynolds operator is extendable if and only if this cohomology class in the third cohomology group vanishes.
Definition 7. 
Let R : V L be a generalized Reynolds operator on a Hom-Lie triple system ( L , [ , , ] , α ) associated to ( V , β ; θ ) and 3-cocycle H . If R t = i = 0 n t i R i with R 0 = R , R i Hom ( V , L ) , i = 1 , , n , defines a K [ [ t ] ] / ( t n + 1 ) -module map from V [ [ t ] ] / ( t n + 1 ) to the Hom-Lie triple system L [ [ t ] ] / ( t n + 1 ) satisfying
R t β = α R t , [ R t u , R t v , R t w ] = R t ( θ ( R t v , R t w ) u + D ( R t u , R t v ) w θ ( R t u , R t w ) v + H ( R t u , R t v , R t w ) ) ,
for any u , v , w V , we say that R t is an order n deformation of R.
Definition 8. 
Let R : V L be a generalized Reynolds operator on a Hom-Lie triple system ( L , [ , , ] , α ) associated to ( V , β ; θ ) and 3-cocycle H . Let R t = i = 0 n t i R i be an order n deformation of R. If there is an R n + 1 C R 1 ( V , L ) , such that R t = R t + t n + 1 R n + 1 is an order ( n + 1 ) deformation of R, then we say that R t is extendable.
Proposition 4. 
Let R : V L be a generalized Reynolds operator on a Hom-Lie triple system ( L , [ , , ] , α ) associated to ( V , β ; θ ) and 3-cocycle H . Let R t = i = 0 n t i R i be an order n deformation of R. Then, R t is extendable if and only if the cohomology class [ O b s n ] H R 3 ( V , L ) vanishes, where
O b s n ( u 1 , u 2 , u 3 ) = i + j + k = n + 1 0 i , j , k n ( [ R i u 1 , R j u 2 , R k u 3 ] R i ( D ( R j u 1 , R k u 2 ) u 3 θ ( R j u 1 , R k u 3 ) u 2 + θ ( R j u 2 , R k u 3 ) u 1 ) ) i + j + k + l = n + 1 0 i , j , k , l n R i H ( R j u 1 , R k u 2 , R l u 3 ) .
Proof. 
Let R t = R t + t n + 1 R n + 1 be the extension of R t ; then, for all u 1 , u 2 , u 3 V
[ R t u 1 , R t u 2 , R t u 3 ] = R t ( D ( R t u 1 , R t u 2 ) u 3 θ ( R t u 1 , R t u 3 ) u 2 + θ ( R t u 2 , R t u 3 ) u 1 + H ( R t u 1 , R t u 2 , R t u 3 ) ) .
Expanding the equation and comparing the coefficients of t n + 1 yields:
i + j + k = n + 1 0 i , j , k n + 1 [ R i u 1 , R j u 2 , R k u 3 ] R i ( D ( R j u 1 , R k u 2 ) u 3 θ ( R j u 1 , R k u 3 ) u 2 + θ ( R j u 2 , R k u 3 ) u 1 ) i + j + k + l = n + 1 0 i , j , k , l n + 1 R i H ( R j u 1 , R k u 2 , R l u 3 ) = 0 ,
which is equivalent to
i + j + k = n + 1 0 i , j , k n [ R i u 1 , R j u 2 , R k u 3 ] R i ( D ( R j u 1 , R k u 2 ) u 3 θ ( R j u 1 , R k u 3 ) u 2 + θ ( R j u 2 , R k u 3 ) u 1 ) i + j + k + l = n + 1 0 i , j , k , l n R i H ( R j u 1 , R k u 2 , R l u 3 ) + [ R n + 1 u 1 , R u 2 , R u 3 ] + [ R u 1 , R n + 1 u 2 , R u 3 ] + [ R u 1 , R u 2 , R n + 1 u 3 ] R n + 1 ( D ( R u 1 , R u 2 ) u 3 θ ( R u 1 , R u 3 ) u 2 + θ ( R u 2 , R u 3 ) u 1 + H ( R u 1 , R u 2 , R u 3 ) ) R ( D ( R n + 1 u 1 , R u 2 ) u 3 + D ( R u 1 , R n + 1 u 2 ) u 3 θ ( R n + 1 u 1 , R u 3 ) u 2 θ ( R u 1 , R n + 1 u 3 ) u 2 + θ ( R n + 1 u 2 , R u 3 ) u 1 + θ ( R u 2 , R n + 1 u 3 ) u 1 + H ( R n + 1 u 1 , R u 2 , R u 3 ) + H ( R u 1 , R n + 1 u 2 , R u 3 ) + H ( R u 1 , R u 2 , R n + 1 u 3 ) ) = 0 ,
that is, O b s n ( u 1 , u 2 , u 3 ) + δ R R n + 1 ( u 1 , u 2 , u 3 ) = 0 . Hence, O b s n = δ R R n + 1 ; furthermore, δ R O b s n = 0 , which implies that the cohomology class [ O b s n ] H R 3 ( V , L ) vanishes.
Conversely, suppose that the cohomology class [ O b s n ] vanishes; then, there exists a 1-cochain R n + 1 C R 1 ( V , L ) , such that O b s n = δ R R n + 1 . Set R t = R t + t n + 1 R n + 1 . Then, R t satisfies
i + j + k = d [ R i u 1 , R j u 2 , R k u 3 ] R i ( D ( R j u 1 , R k u 2 ) u 3 θ ( R j u 1 , R k u 3 ) u 2 + θ ( R j u 2 , R k u 3 ) u 1 ) i + j + k + l = d R i H ( R j u 1 , R k u 2 , R l u 3 ) = 0 , 0 d n + 1 ,
which implies that Equation (17) holds; that is, R t is an order ( n + 1 ) deformation of R. So it is an extension of R t .

6. Hom-NS-Lie Triple Systems

In this section, we introduce the notion of Hom-NS-Lie triple systems, which is the underlying algebraic structure of generalized Reynolds operators. Moreover, we show that there exists a Hom-Lie triple-system structure on a Hom-NS-Lie triple system.
Definition 9. 
(i) A Hom-NS-Lie triple system ( L , { , , } , [ , , ] , α ) consists of a vector space L with trilinear products { , , } , [ , , ] : L L L L and an algebra morphism α : L L , such that
[ a 1 , a 2 , a 3 ] = [ a 2 , a 1 , a 3 ] ,
a 1 , a 2 , a 3 [ a 1 , a 2 , a 3 ] = 0 ,
{ α ( b 1 ) , α ( b 2 ) , [ [ a 1 , a 2 , a 3 ] ] } = { { b 1 , b 2 , a 1 } , α ( a 2 ) , α ( a 3 ) } { { b 1 , b 2 , a 2 } , α ( a 1 ) , α ( a 3 ) } + { α ( a 1 ) , α ( a 2 ) , { b 1 , b 2 , a 3 } } ,
{ α ( b 1 ) , α ( b 2 ) , { a 1 , a 2 , a 3 } } = { { b 1 , b 2 , a 1 } , α ( a 2 ) , α ( a 3 ) } + { α ( a 1 ) , [ [ b 1 , b 2 , a 2 ] ] , α ( a 3 ) } + { α ( a 1 ) , α ( a 2 ) , [ [ b 1 , b 2 , a 3 ] ] } ,
α ( b 1 ) , α ( b 2 ) , [ [ a 1 , a 2 , a 3 ] ] ] = [ [ [ b 1 , b 2 , a 1 ] ] , α ( a 2 ) , α ( a 3 ) ] + [ α ( a 1 ) , [ [ b 1 , b 2 , a 2 ] ] , α ( a 3 ) ] + [ α ( a 1 ) , α ( a 2 ) , [ [ b 1 , b 2 , a 3 ] ] ] + { [ b 1 , b 2 , a 1 ] , α ( a 2 ) , α ( a 3 ) } { [ b 1 , b 2 , a 2 ] , α ( a 1 ) , α ( a 3 ) } + { α ( a 1 ) , α ( a 2 ) , [ b 1 , b 2 , a 3 ] } { α ( b 1 ) , α ( b 2 ) , [ a 1 , a 2 , a 3 ] } ,
where a 1 , a 2 , a 3 , b 1 , b 2 L , { , , } and [ [ , , ] ] are defined to be
{ a 1 , a 2 , a 3 } = { a 3 , a 2 , a 1 } { a 3 , a 1 , a 2 } ,
[ [ a 1 , a 2 , a 3 ] ] = { a 1 , a 2 , a 3 } + { a 1 , a 2 , a 3 } { a 2 , a 1 , a 3 } + [ a 1 , a 2 , a 3 ] .
(ii) A homomorphism between two Hom-NS-Lie triple systems ( L 1 , { , , } 1 , [ , , ] 1 , α 1 ) and ( L 2 , { , , } 2 , [ , , ] 2 , α 2 ) is a linear map φ : L 1 L 2 satisfying φ ( α 1 ( a 1 ) ) = α 2 ( φ ( a 1 ) ) , φ ( { a 1 , a 2 , a 3 } 1 ) = { φ ( a 1 ) , φ ( a 2 ) , φ ( a 3 ) } 2 , φ ( [ a 1 , a 2 , a 3 ] 1 ) = [ φ ( a 1 ) , φ ( a 2 ) , φ ( a 3 ) ] 2 .
Remark 3. 
(i) Let ( L , { , , } , [ , , ] , α ) be a Hom-NS-Lie triple system. If the bracket { , , } = 0 , then we ascertain that ( L , [ , , ] , α ) is a Hom-Lie triple system.
(ii) An NS-Lie triple system is a Hom-NS-Lie triple system with α = id L . See [30] for more details about NS-Lie triple systems.
Proposition 5. 
Let ( L , { , , } , [ , , ] , α ) be a Hom-NS-Lie triple system. Then:
(i) the triple ( L , [ [ , , ] ] , α ) is a Hom-Lie triple system, which is called the adjacent Hom-Lie triple system.
(ii) the triple ( L , α ; ϑ ) is a representation of the adjacent Hom-Lie triple system ( L , [ [ , , ] ] , α ) , where
ϑ : L L End ( L ) , ( a 1 , a 2 ) ( b { b , a 1 , a 2 } ) , a 1 , a 2 , b L .
Proof. 
(i) Evidently, for any a 1 , a 2 , a 3 L , by Equations (18), (19), (23) and (24), we have [ [ a 1 , a 2 , a 3 ] ] = [ [ a 2 , a 1 , a 3 ] ] and a 1 , a 2 , a 3 [ [ a 1 , a 2 , a 3 ] ] = 0 . Furthermore, for any a 1 , a 2 , a 3 , b 1 , b 2 L , we have
[ [ α ( b 1 ) , α ( b 2 ) , [ [ a 1 , a 2 , a 3 ] ] ] ] [ [ [ [ b 1 , b 2 , a 1 ] ] , α ( a 2 ) , α ( a 3 ) ] ] [ [ α ( a 1 ) , [ [ b 1 , b 2 , a 2 ] ] , α ( a 3 ) ] ] [ [ α ( a 1 ) , α ( a 2 ) , [ [ b 1 , b 2 , a 3 ] ] ] ] ( by Equation ( 24 ) ) = { α ( b 1 ) , α ( b 2 ) , [ [ a 1 , a 2 , a 3 ] ] } + { α ( b 1 ) , α ( b 2 ) , [ [ a 1 , a 2 , a 3 ] ] } { α ( b 2 ) , α ( b 1 ) , [ [ a 1 , a 2 , a 3 ] ] } + [ α ( b 1 ) , α ( b 2 ) , [ [ a 1 , a 2 , a 3 ] ] ] { [ [ b 1 , b 2 , a 1 ] ] , α ( a 2 ) , α ( a 3 ) } { [ [ b 1 , b 2 , a 1 ] ] , α ( a 2 ) , α ( a 3 ) } + { α ( a 2 ) , [ [ b 1 , b 2 , a 1 ] ] , α ( a 3 ) } [ [ [ b 1 , b 2 , a 1 ] ] , α ( a 2 ) , α ( a 3 ) ] { α ( a 1 ) , [ [ b 1 , b 2 , a 2 ] ] , α ( a 3 ) } { α ( a 1 ) , [ [ b 1 , b 2 , a 2 ] ] , α ( a 3 ) } + { [ [ b 1 , b 2 , a 2 ] ] , α ( a 1 ) , α ( a 3 ) } [ α ( a 1 ) , [ [ b 1 , b 2 , a 2 ] ] , α ( a 3 ) ] { α ( a 1 ) , α ( a 2 ) , [ [ b 1 , b 2 , a 3 ] ] } { α ( a 1 ) , α ( a 2 ) , [ [ b 1 , b 2 , a 3 ] ] } + { α ( a 2 ) , α ( a 1 ) , [ [ b 1 , b 2 , a 3 ] ] } [ α ( a 1 ) , α ( a 2 ) , [ [ b 1 , b 2 , a 3 ] ] ] ( by Equations ( 23 ) and ( 24 ) )
= ( { α ( b 2 ) , α ( b 1 ) , [ [ a 1 , a 2 , a 3 ] ] } + { { b 2 , b 1 , a 1 } , α ( a 2 ) , α ( a 3 ) } { { b 2 , b 1 , a 2 } , α ( a 1 ) , α ( a 3 ) } + { α ( a 1 ) , α ( a 2 ) , { b 2 , b 1 , a 3 } } ) + ( { α ( b 1 ) , α ( b 2 ) , [ [ a 1 , a 2 , a 3 ] ] } { { b 1 , b 2 , a 1 } , α ( a 2 ) , α ( a 3 ) } + { { b 1 , b 2 , a 2 } , α ( a 1 ) , α ( a 3 ) } { α ( a 1 ) , α ( a 2 ) , { b 1 , b 2 , a 3 } } ) + ( { α ( b 1 ) , α ( b 2 ) , { a 2 , a 1 , a 3 } } + { { b 1 , b 2 , a 2 } , α ( a 1 ) , α ( a 3 ) } + { α ( a 2 ) , [ [ b 1 , b 2 , a 1 ] ] , α ( a 3 ) } + { α ( a 2 ) , α ( a 1 ) , [ [ b 1 , b 2 , a 3 ] ] } ) + ( { α ( b 1 ) , α ( b 2 ) , { a 1 , a 2 , a 3 } } { { b 1 , b 2 , a 1 } , α ( a 2 ) , α ( a 3 ) } { α ( a 1 ) , [ [ b 1 , b 2 , a 2 ] ] , α ( a 3 ) } { α ( a 1 ) , α ( a 2 ) , [ [ b 1 , b 2 , a 3 ] ] } ) + ( { α ( b 1 ) , α ( b 2 ) , { a 1 , a 2 , a 3 } } { [ [ b 1 , b 2 , a 1 ] ] , α ( a 2 ) , α ( a 3 ) } { α ( a 1 ) , [ [ b 1 , b 2 , a 2 ] ] , α ( a 3 ) } { α ( a 1 ) , α ( a 2 ) , { b 1 , b 2 , a 3 } } ) + ( [ α ( b 1 ) , α ( b 2 ) , [ [ a 1 , a 2 , a 3 ] ] ] [ [ [ b 1 , b 2 , a 1 ] ] , α ( a 2 ) , α ( a 3 ) ] [ α ( a 1 ) , [ [ b 1 , b 2 , a 2 ] ] , α ( a 3 ) ] [ α ( a 1 ) , α ( a 2 ) , [ [ b 1 , b 2 , a 3 ] ] ] { [ b 1 , b 2 , a 1 ] , α ( a 2 ) , α ( a 3 ) } + { [ b 1 , b 2 , a 2 ] , α ( a 1 ) , α ( a 3 ) } { α ( a 1 ) , α ( a 2 ) , [ b 1 , b 2 , a 3 ] } + { α ( b 1 ) , α ( b 2 ) , [ a 1 , a 2 , a 3 ] } ) ( by Equations ( 20 ) ( 23 ) ) = 0 .
Hence, ( L , [ [ , , ] ] , α ) is a Hom-Lie triple system.
(ii) For all a 1 , a 2 , a 3 L , we have
D ( a 1 , a 2 ) a 3 = ϑ ( a 2 , a 1 ) a 3 ϑ ( a 1 , a 2 ) a 3 = { a 3 , a 2 , a 1 } { a 3 , a 1 , a 2 } = { a 1 , a 2 , a 3 } .
Evidently, ϑ ( α ( a 1 ) , α ( a 2 ) ) α ( a 3 ) = α ( ϑ ( a 1 , a 2 ) a 3 ) . Furthermore, for any a 1 , a 2 , a 3 , b 1 , b 2 L , we obtain
ϑ ( α ( b 1 ) , α ( b 2 ) ) ϑ ( a 1 , a 2 ) a 3 ϑ ( α ( a 2 ) , α ( b 2 ) ) ϑ ( a 1 , b 1 ) a 3 ϑ ( α ( a 1 ) , [ [ a 2 , b 1 , b 2 ] ] ) α ( a 3 ) + D ( α ( a 2 ) , α ( b 1 ) ) ϑ ( a 1 , b 2 ) a 3 = { { a 3 , a 1 , a 2 } , α ( b 1 ) , α ( b 2 ) } { { a 3 , a 1 , b 1 } , α ( a 2 ) , α ( b 2 ) } { α ( a 3 ) , α ( a 1 ) , [ [ a 2 , b 1 , b 2 ] ] } + { α ( a 2 ) , α ( b 1 ) , { a 3 , a 1 , b 2 } } ( by Equation ( 20 ) ) = 0 , ϑ ( α ( b 1 ) , α ( b 2 ) ) D ( a 1 , a 2 ) a 3 D ( α ( a 1 ) , α ( a 2 ) ) ϑ ( b 1 , b 2 ) a 3 + ϑ ( [ [ a 1 , a 2 , b 1 ] ] , α ( b 2 ) ) α ( a 3 ) + ϑ ( α ( b 1 ) , [ [ a 1 , a 2 , b 2 ] ] ) α ( a 3 ) = { { a 1 , a 2 , a 3 } , α ( b 1 ) , α ( b 2 ) } { α ( a 1 ) , α ( a 2 ) , { a 3 , b 1 , b 2 } } + { α ( a 3 ) , [ [ a 1 , a 2 , b 1 ] ] , α ( b 2 ) } + { α ( a 3 ) , α ( b 1 ) , [ [ a 1 , a 2 , b 2 ] ] } ( by Equation ( 21 ) ) = 0 .
Therefore, ( L , α ; ϑ ) is a representation of the adjacent Hom-Lie triple system ( L , [ [ , , ] ] , α ) . □
Corollary 1. 
Let φ : ( L 1 , { , , } 1 , [ , , ] 1 , α 1 ) ( L 2 , { , , } 2 , [ , , ] 2 , α 2 ) be a Hom-NS-Lie triple-system homomorphism. Then, φ is also a Hom-Lie triple-system homomorphism between the subadjacent Hom-Lie triple system from ( L 1 , [ [ , , ] ] 1 , α 1 ) to ( L 2 , [ [ , , ] ] 2 , α 2 ) .
The following proposition illustrates that Hom-NS-Lie triple systems can be viewed as the underlying algebraic structures of generalized Reynolds operators on Hom-Lie triple systems.
Proposition 6. 
Let R : V L be a generalized Reynolds operator on a Hom-Lie triple system ( L , [ , , ] , α ) associated to ( V , β ; θ ) and 3-cocycle H . Then, the 4-tuple ( V , { , , } θ , [ , , ] H , β ) is a Hom-NS-Lie triple system, where
{ u , v , w } θ = θ ( R v , R w ) u , [ u , v , w ] H = H ( R u , R v , R w ) , u , v , w V .
Proof. 
For any u , v , w , s , t V , first, evidently, we have [ u , v , w ] H = [ v , u , w ] H and u , v , w [ u , v , w ] H = 0 . On the one hand,
{ u , v , w } θ = { w , v , u } θ { w , u , v } θ = θ ( R v , R u ) w θ ( R u , R v ) w = D ( R u , R v ) w , [ [ u , v , w ] ] V = { u , v , w } θ + { u , v , w } θ { v , u , w } θ + [ u , v , w ] H = D ( R u , R v ) w + θ ( R v , R w ) u θ ( R u , R w ) v + H ( R u , R v , R w ) .
On the other hand, we obtain
{ β ( s ) , β ( t ) , [ [ u , v , w ] ] V } θ { { s , t , u } θ , β ( v ) , β ( w ) } θ + { { s , t , v } θ , β ( u ) , β ( w ) } θ { β ( u ) , β ( v ) , { s , t , w } θ } θ = θ ( R β ( t ) , R [ [ u , v , w ] ] V ) β ( s ) θ ( R β ( v ) , R β ( w ) ) θ ( R t , R u ) s + θ ( R β ( u ) , R β ( w ) ) θ ( R t , R v ) s D ( R β ( u ) , R β ( v ) ) θ ( R t , R w ) s ( by Equations ( 8 ) and ( 9 ) ) = θ ( α ( R t ) , [ R u , R v , R w ] ) β ( s ) θ ( α ( R v ) , α ( R w ) ) θ ( R t , R u ) s + θ ( α ( R u ) , α ( R w ) ) θ ( R t , R v ) s D ( α ( R u ) , α ( R v ) ) θ ( R t , R w ) s ( by Equation ( 5 ) ) = 0 , { { s , t , u } θ , β ( v ) , β ( w ) } θ + { β ( u ) , [ [ s , t , v ] ] V , β ( w ) } θ + { β ( u ) , β ( v ) , [ [ s , t , w ] ] V } θ { β ( s ) , β ( t ) , { u , v , w } θ } θ = θ ( R β ( v ) , R β ( w ) ) D ( R s , R t ) u + θ ( R [ [ s , t , v ] ] V , R β ( w ) ) β ( u ) + θ ( R β ( v ) , R [ [ s , t , w ] ] V ) β ( u ) D ( R β ( s ) , R β ( t ) ) θ ( R v , R w ) u ( by Equations ( 8 ) and ( 9 ) ) = θ ( α ( R v ) , α ( R w ) ) D ( R s , R t ) u + θ ( [ R s , R t , R v ] , α ( R w ) ) β ( u ) + θ ( α ( R v ) , [ R s , R t , R w ] ) β ( u ) D ( α ( R s ) , α ( R t ) ) θ ( R v , R w ) u ( by Equation ( 6 ) ) = 0 , [ [ [ s , t , u ] ] V , β ( v ) , β ( w ) ] H + [ β ( u ) , [ [ s , t , v ] ] V , β ( w ) ] H + [ β ( u ) , β ( v ) , [ [ s , t , w ] ] V ] H + { [ s , t , u ] H , α ( v ) , α ( w ) } θ { [ s , t , v ] H , β ( u ) , β ( w ) } θ + { β ( u ) , β ( v ) , [ s , t , w ] H } θ { β ( s ) , β ( t ) , [ u , v , w ] H } θ [ β ( s ) , β ( t ) , [ [ u , v , w ] ] V ] H = H ( R [ [ s , t , u ] ] V , R β ( v ) , R β ( w ) ) + H ( R β ( u ) , R [ [ s , t , v ] ] V , R β ( w ) ) + H ( R β ( u ) , R β ( v ) , R [ [ s , t , w ] ] V ) + θ ( R β ( v ) , R β ( w ) ) H ( R s , R t , R u ) θ ( R β ( u ) , R β ( w ) ) H ( R s , R t , R v ) + D ( R β ( u ) , R β ( v ) ) H ( R s , R t , R w ) D ( R β ( s ) , R β ( t ) ) H ( R u , R v , R w ) H ( R β ( s ) , R β ( t ) , R [ [ u , v , w ] ] V ) ( by Equations ( 8 ) and ( 9 ) ) = H ( [ R s , R t , R u ] , α ( R v ) , α ( R w ) ) + H ( α ( R u ) , [ R s , R t , R v ] , α ( R w ) ) + H ( α ( R u ) , α ( R v ) , [ R s , R t , R w ] ) + θ ( α ( R v ) , α ( R w ) ) H ( R s , R t , R u ) θ ( α ( R u ) , α ( R w ) ) H ( R s , R t , R v ) + D ( α ( R u ) , α ( R v ) ) H ( R s , R t , R w ) D ( α ( R s ) , α ( R t ) ) H ( R u , R v , R w ) H ( α ( R s ) , α ( R t ) , [ R u , R v , R w ] ) ( by Equation ( 7 ) ) = 0 .
Thus, ( V , { , , } θ , [ , , ] H , β ) is a Hom-NS-Lie triple system. □
Example 9. 
Let ( L , [ , , ] , α ) be a Hom-Lie triple system and N : L L be a Nijenhuis operator. Then, ( L , { , , } θ , [ , , ] H , α ) is a Hom-NS-Lie triple system, where
{ a , b , c } θ = [ a , N b , N c ] , [ a , b , c ] H = N ( [ N a , b , c ] + [ a , N b , c ] + [ a , b , N c ] ) + N 2 [ a , b , c ] , a , b , c L .
Proposition 7. 
Let R 1 : V 1 L 1 (resp. R 2 : V 2 L 2 ) be a generalized Reynolds operator on a Hom-Lie triple system ( L 1 , [ , , ] 1 , α 1 ) (resp. ( L 2 , [ , , ] 2 , α 2 ) ) associated to ( V 1 , β 1 ; θ 1 ) (resp. ( V 2 , β 2 ; θ 2 ) ) and 3-cocycle H 1 (resp. H 2 ), and let ( η , ζ ) be a homomorphism from R 1 to R 2 . Let ( V 1 , { , , } θ 1 , [ , , ] H 1 , β 1 ) and ( V 2 , { , , } θ 2 , [ , , ] H 2 , β 2 ) be the induced Hom-NS-Lie triple systems, respectively. Then, ζ is a homomorphism from the Hom-NS-Lie triple system ( V 1 , { , , } θ 1 , [ , , ] H 1 , β 1 ) to ( V 2 , { , , } θ 2 , [ , , ] H 2 , β 2 ) .
Proof. 
For any u , v , w V , by Equations (10)–(13), we have
ζ ( { u , v , w } θ 1 ) = ζ ( θ 1 ( R 1 v , R 1 w ) u ) = θ 2 ( η ( R 1 v ) , η ( R 1 w ) ) ζ ( u ) = θ 2 ( R 2 ζ ( v ) , R 2 ζ ( w ) ) ζ ( u ) = { ζ ( u ) , ζ ( v ) , ζ ( w ) } θ 2 , ζ ( [ u , v , w ] H 1 ) = ζ ( H 1 ( R 1 u , R 1 v , R 1 w ) ) = H 2 ( η ( R 1 u ) , η ( R 1 v ) , η ( R 1 w ) ) = H 2 ( R 2 ζ ( u ) , R 2 ζ ( v ) , R 2 ζ ( w ) ) = [ ζ ( u ) , ζ ( v ) , ζ ( w ) ] H 2 ,
which implies that ζ is a homomorphism from ( V 1 , { , , } θ 1 , [ , , ] H 1 , β 1 ) to ( V 2 , { , , } θ 2 , [ , , ] H 2 , β 2 ) . □

7. Conclusions

In the current research, we introduce the concept of generalized Reynolds operators on Hom-Lie triple systems, and give some examples. Subsequently, we construct the cohomology of generalized Reynolds operators on Hom-Lie triple systems. Furthermore, we show that any linear deformation of a generalized Reynolds operator is classified by the first cohomology group. Also, we prove that an order n deformation of a generalized Reynolds operator is extendable if and only if this cohomology class in the third cohomology group vanishes. Finally, we introduce a new algebraic structure, in connection with generalized Reynolds operators on a Hom-Lie triple system, called Hom-NS-Lie triple system.

Author Contributions

Conceptualization, Y.X., W.T. and F.L.; methodology, Y.X., W.T. and F.L.; investigation, Y.X., W.T. and F.L.; resources, Y.X., W.T. and F.L.; writing—original draft preparation, Y.X., W.T. and F.L.; writing—review and editing, Y.X., W.T. and F.L. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the Foundation of Science and Technology of Guizhou Province (Grant No. [2018]1020). The APC was funded by [2018]1020.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Acknowledgments

The authors are very grateful to the anonymous referee for his/her thorough review of this work and his/her comments.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Cartan, E. Oeuvres Completes. Part 1; Gauthier-Villars: Paris, France, 1952; Volume 2, pp. 101–138. [Google Scholar]
  2. Jacobson, N. Lie and Jordan triple Systems. Am. J. Math. 1949, 71, 49–170. [Google Scholar] [CrossRef]
  3. Jacobson, N. General representation theory of Jordan algebras. Trans. Am. Math. Soc. 1951, 70, 509–530. [Google Scholar] [CrossRef]
  4. Hartwig, J.; Larsson, D.; Silvestrov, S. Deformations of Lie algebras using σ-derivations. J. Algebra 2006, 295, 321–344. [Google Scholar] [CrossRef]
  5. Yau, D. On n-ary Hom-Nambu and Hom-Nambu-Lie algebras. J. Geom. Phys. 2012, 62, 506–522. [Google Scholar] [CrossRef]
  6. Ma, Y.; Chen, L.; Lin, J. Central extensions and deformations of Hom-Lie triple systems. Commun. Algebra 2018, 46, 1212–1230. [Google Scholar] [CrossRef]
  7. Baklouti, A. Quadratic Hom-Lie triple systems. J. Geom. Phys. 2017, 121, 166–175. [Google Scholar] [CrossRef]
  8. Teng, W.; Jin, J. Weighted O -operators on Hom-Lie triple systems. arXiv 2023, arXiv:2310.13728. [Google Scholar]
  9. Chen, L.; Hou, Y.; Ma, Y. Product and complex structures on Hom-Lie triple systems. J. Shandong Univ. Nat. Sci. 2021, 56, 48–60. (In Chinese) [Google Scholar]
  10. Teng, W.; Long, F.; Zhang, H.; Jin, J. On compatible Hom-Lie triple systems. arXiv 2023, arXiv:2311.07531. [Google Scholar]
  11. Zhou, J.; Chen, L.; Ma, Y. Generalized Derivations of Hom-Lie triple systems. Bull. Malays. Math. Sci. Soc. 2018, 41, 637–656. [Google Scholar] [CrossRef]
  12. Baxter, G. An analytic problem whose solution follows from a simple algebraic identity. Pac. J. Math. 1960, 10, 731–742. [Google Scholar] [CrossRef]
  13. Kupershmidt, B.A. What a classical r-matrix really is. J. Nonlinear Math. Phys. 1999, 6, 448–488. [Google Scholar] [CrossRef]
  14. Bakayoko, I. Hom-post-Lie modules, O -operators and some functors on Hom-algebras. arXiv 2016, arXiv:1610.02845. [Google Scholar]
  15. Chen, S.; Lou, Q.; Sun, Q. Cohomologies of Rota-Baxter Lie triple systems and applications. Commun. Algebra 2023, 51, 1–17. [Google Scholar]
  16. Chtioui, T.; Hajjaji, A.; Mabrouk, S.; Makhlouf, A. Cohomologies and deformations of O -operators on Lie triple systems. J. Math. Phys. 2023, 64, 081701. [Google Scholar] [CrossRef]
  17. Li, Y.; Wang, D. Relative Rota-Baxter operators on Hom-Lie triple systems. Commun. Algebra 2023. [Google Scholar] [CrossRef]
  18. Mishra, S.; Naolekar, A. O -operators on hom-Lie algebras. J. Math. Phys. 2020, 61, 121701. [Google Scholar] [CrossRef]
  19. Teng, W.; Jin, J.; Long, F. Relative Rota-Baxter operators on Hom-Lie-Yamaguti algebras. J. Math. Res. Appl. 2023, 43, 648–664. [Google Scholar]
  20. Reynolds, O. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philos. Trans. R. Soc. A 1895, 136, 123–164. [Google Scholar]
  21. Kampé de Fériet, J.; Pai, S.I. Introduction to the Statistical Theory of Turbulence, Correlation and Spectrum; The Institute for Fluid Dynamics and Applied Mathematics University of Maryland: College Park, MD, USA, 1951. [Google Scholar]
  22. Uchino, K. Quantum analogy of Poisson geometry, related dendriform algebras and Rota-Baxter operators. Lett. Math. Phys. 2008, 85, 91–109. [Google Scholar] [CrossRef]
  23. Das, A. Cohomology and deformations of twisted Rota-Baxter operators and NS-algebras. J. Homotopy Relat. Struct. 2022, 17, 233–262. [Google Scholar] [CrossRef]
  24. Das, A. Twisted Rota-Baxter operators and Reynolds operators on Lie algebras and NS-Lie algebras. J. Math. Phys. 2021, 62, 091701. [Google Scholar] [CrossRef]
  25. Chtioui, T.; Hajjaji, A.; Mabrouk, S.; Makhlouf, A. Twisted O -operators on 3-Lie algebras and 3-NS-Lie algebras. arXiv 2021, arXiv:2107.10890v1. [Google Scholar]
  26. Hou, S.; Sheng, Y. Generalized Reynolds operators on 3-Lie algebras and NS-3-Lie algebras. Int. J. Geom. Methods Mod. Phys. 2021, 18, 2150223. [Google Scholar] [CrossRef]
  27. Li, Y.; Wang, D. Twisted Rota-Baxter operators on 3-Hom-Lie algebras. Commun. Algebra 2023, 51, 1–14. [Google Scholar] [CrossRef]
  28. Xu, S.; Wang, W.; Zhao, J. Twisted Rota-Baxter operators on Hom-Lie algebras. AIMS Math. 2024, 9, 2619–2640. [Google Scholar] [CrossRef]
  29. Teng, W.; Jin, J.; Long, F. Generalized reynolds operators on Lie-Yamaguti Algebras. Axioms 2023, 12, 934. [Google Scholar] [CrossRef]
  30. Gharbi, R.; Mabrouk, S.; Makhlouf, A. Maurer-Cartan type cohomology on generalized Reynolds operators and NS-structures on Lie triple systems. arXiv 2023, arXiv:2309.01385. [Google Scholar]
  31. Wang, X.; Ma, Y.; Chen, L. Generalized Reynolds Operators on Lie Supertriple Systems. 2023. Available online: https://www.researchgate.net/publication/371835147 (accessed on 28 December 2023).
  32. Yamaguti, K. On the cohomology space of Lie triple system. Kumamoto J. Sci. Ser. A 1960, 5, 44–52. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Xiao, Y.; Teng, W.; Long, F. Generalized Reynolds Operators on Hom-Lie Triple Systems. Symmetry 2024, 16, 262. https://doi.org/10.3390/sym16030262

AMA Style

Xiao Y, Teng W, Long F. Generalized Reynolds Operators on Hom-Lie Triple Systems. Symmetry. 2024; 16(3):262. https://doi.org/10.3390/sym16030262

Chicago/Turabian Style

Xiao, Yunpeng, Wen Teng, and Fengshan Long. 2024. "Generalized Reynolds Operators on Hom-Lie Triple Systems" Symmetry 16, no. 3: 262. https://doi.org/10.3390/sym16030262

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop