A Forecast of the Sensitivity of the DALI Experiment to Galactic Axion Dark Matter
Abstract
1. Introduction
2. Methods
2.1. Data Analysis
2.2. Sensitivity Estimation
2.3. Candidate Selection
3. Data Processing
4. Results and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bertone, G.; Hooper, D. History of dark matter. Rev. Mod. Phys. 2018, 90, 045002. [Google Scholar] [CrossRef]
- Zwicky, F. Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta 1933, 6, 110–127. [Google Scholar] [CrossRef]
- Rubin, V.C.; Ford, W.K., Jr. Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. Astrophys. J. 1970, 159, 379–403. [Google Scholar] [CrossRef]
- Weinberg, S. A new light boson? Phys. Rev. Lett. 1978, 40, 223–226. [Google Scholar] [CrossRef]
- Wilczek, F. Problem of strong p and t invariance in the presence of instantons. Phys. Rev. Lett. 1978, 40, 279–282. [Google Scholar] [CrossRef]
- Peccei, R.D.; Quinn, H.R. CP conservation in the presence of pseudoparticles. Phys. Rev. Lett. 1977, 38, 1440–1443. [Google Scholar] [CrossRef]
- Abbott, L.; Sikivie, P. A cosmological bound on the invisible axion. Phys. Lett. B 1983, 120, 133–136. [Google Scholar] [CrossRef]
- Dine, M.; Fischler, W. The not-so-harmless axion. Phys. Lett. B 1983, 12, 137–141. [Google Scholar] [CrossRef]
- Preskill, J.; Wise, M.B.; Wilczek, F. Cosmology of the invisible axion. Phys. Lett. B 1983, 120, 127–132. [Google Scholar] [CrossRef]
- Kim, J.E. Weak-interaction singlet and strong CP invariance. Phys. Rev. Lett. 1979, 43, 103–107. [Google Scholar] [CrossRef]
- Shifman, M.; Vainshtein, A.; Zakharov, V. Can confinement ensure natural cp invariance of strong interactions? Nucl. Phys. B 1980, 166, 493–506. [Google Scholar] [CrossRef]
- Dine, M.; Fischler, W.; Srednicki, M. A simple solution to the strong cp problem with a harmless axion. Phys. Lett. B 1981, 104, 199–202. [Google Scholar] [CrossRef]
- Zhitnitsky, A.R. On Possible Suppression of the Axion Hadron Interactions. Sov. J. Nucl. Phys. 1980, 31, 260. reprinted in Yad. Fiz. 1980, 31, 497. (In Russian) [Google Scholar]
- Ehret, K.; Frede, M.; Ghazaryan, S.; Hildebrandt, M.; Knabbe, E.A.; Kracht, D.; Lindner, A.; List, J.; Meier, T.; Meyer, N.; et al. New ALPS Results on Hidden-Sector Lightweights. Phys. Lett. B 2010, 689, 149–155. [Google Scholar] [CrossRef]
- Betz, M.; Caspers, F.; Gasior, M.; Thumm, M.; Rieger, S.W. First results of the CERN Resonant Weakly Interacting sub-eV Particle Search (CROWS). Phys. Rev. D 2013, 88, 075014. [Google Scholar] [CrossRef]
- Della Valle, F.; Ejlli, A.; Gastaldi, U.; Messineo, G.; Milotti, E.; Pengo, R.; Ruoso, G.; Zavattini, G. The PVLAS experiment: Measuring vacuum magnetic birefringence and dichroism with a birefringent Fabry–Perot cavity. Eur. Phys. J. C 2016, 76, 24. [Google Scholar] [CrossRef]
- Ballou, R.; Deferne, G.; Finger, M., Jr.; Finger, M.; Flekova, L.; Hosek, J.; Kunc, S.; Macuchova, K.; Meissner, K.A.; Pugnat, P.; et al. New exclusion limits on scalar and pseudoscalar axionlike particles from light shining through a wall. Phys. Rev. D 2015, 92, 092002. [Google Scholar] [CrossRef]
- Anastassopoulos, V.; Aune, S.; Barth, K.; Belov, A.; Cantatore, G.; Carmona, J.M.; Castel, J.F.; Cetin, S.A.; Christensen, F.; Collar, J.I.; et al. New CAST Limit on the Axion-Photon Interaction. Nat. Phys. 2017, 13, 584–590. [Google Scholar] [CrossRef]
- Dolan, M.J.; Hiskens, F.J.; Volkas, R.R. Advancing globular cluster constraints on the axion-photon coupling. J. Cosmol. Astropart. Phys. 2022, 10, 096. [Google Scholar] [CrossRef]
- Ayala, A.; Domínguez, I.; Giannotti, M.; Mirizzi, A.; Straniero, O. Revisiting the bound on axion-photon coupling from Globular Clusters. Phys. Rev. Lett. 2014, 113, 191302. [Google Scholar] [CrossRef]
- Caputo, A.; Raffelt, G.; Vitagliano, E. Muonic boson limits: Supernova redux. Phys. Rev. D 2022, 105, 035022. [Google Scholar] [CrossRef]
- Hamaguchi, K.; Nagata, N.; Yanagi, K.; Zheng, J. Limit on the Axion Decay Constant from the Cooling Neutron Star in Cassiopeia A. Phys. Rev. D 2018, 98, 103015. [Google Scholar] [CrossRef]
- Marsh, M.C.D.; Russell, H.R.; Fabian, A.C.; McNamara, B.P.; Nulsen, P.; Reynolds, C.S. A New Bound on Axion-Like Particles. J. Cosmol. Astropart. Phys. 2017, 12, 036. [Google Scholar] [CrossRef]
- Meyer, M.; Giannotti, M.; Mirizzi, A.; Conrad, J.; Sánchez-Conde, M.A. Fermi Large Area Telescope as a Galactic Supernovae Axionscope. Phys. Rev. Lett. 2017, 118, 011103. [Google Scholar] [CrossRef]
- Regis, M.; Taoso, M.; Vaz, D.; Brinchmann, J.; Zoutendijk, S.L.; Bouché, N.F.; Steinmetz, M. Searching for light in the darkness: Bounds on ALP dark matter with the optical MUSE-faint survey. Phys. Lett. B 2021, 814, 136075. [Google Scholar] [CrossRef]
- Marsh, D.J.E. Axion Cosmology. Phys. Rept. 2016, 643, 1–79. [Google Scholar] [CrossRef]
- Particle Data Group. Review of Particle Physics. Phys. Rev. D 2018, 98, 030001. [Google Scholar] [CrossRef]
- Buschmann, M.; Foster, J.W.; Hook, A.; Peterson, A.; Willcox, D.E.; Zhang, W.; Safdi, B.R. Dark matter from axion strings with adaptive mesh refinement. Nat. Commun. 2022, 13, 1049. [Google Scholar] [CrossRef]
- Sikivie, P. Experimental Tests of the Invisible Axion. Phys. Rev. Lett. 1983, 51, 1415–1417, Erratum in Phys. Rev. Lett. 1984, 52, 695. [Google Scholar] [CrossRef]
- Primakoff, H. Photoproduction of neutral mesons in nuclear electric fields and the mean life of the neutral meson. Phys. Rev. 1951, 81, 899. [Google Scholar] [CrossRef]
- Stern, I.; Chisholm, A.A.; Hoskins, J.; Sikivie, P.; Sullivan, N.S.; Tanner, D.B.; Carosi, G.; van Bibber, K. Cavity design for high-frequency axion dark matter detectors. Rev. Sci. Instrum. 2015, 86, 123305. [Google Scholar] [CrossRef]
- Sikivie, P.; Tanner, D.B.; Wang, Y. Axion detection in the milli-eV mass range. Phys. Rev. D 1994, 50, 4744–4748. [Google Scholar] [CrossRef]
- Rybka, G.; Wagner, A.; Brill, A.; Ramos, K.; Percival, R.; Patel, K. Search for dark matter axions with the Orpheus experiment. Phys. Rev. D 2015, 91, 011701. [Google Scholar] [CrossRef]
- Majorovits, B.; Redondo, J. MADMAX: A new Dark Matter Axion Search using a Dielectric Haloscope. In Proceedings of the ATRAS 2016: 12th “Patras” Workshop on Axions, WIMPs and WISPs, Jeju Island, Republic of Korea, 20–24 June 2016. [Google Scholar] [CrossRef]
- Brun, P.; Caldwell, A.; Chevalier, L.; Dvali, G.; Freire, P.; Garutti, E.; Heyminck, S.; Jochum, J.; Knirck, S.; Kramer, M.; et al. A new experimental approach to probe QCD axion dark matter in the mass range above 40 μeV. Eur. Phys. J. C 2019, 79, 186. [Google Scholar] [CrossRef]
- Cervantes, R.; Carosi, G.; Hanretty, C.; Kimes, S.; LaRoque, B.H.; Leum, G.; Mohapatra, P.; Oblath, N.S.; Ottens, R.; Park, Y.; et al. ADMX-Orpheus first search for 70 μeV dark photon dark matter: Detailed design, operations, and analysis. Phys. Rev. D 2022, 106, 102002. [Google Scholar] [CrossRef]
- Cervantes, R.; Carosi, G.; Hanretty, C.; Kimes, S.; LaRoque, B.H.; Leum, G.; Mohapatra, P.; Oblath, N.S.; Ottens, R.; Park, Y.; et al. Search for 70 μeV Dark Photon Dark Matter with a Dielectrically Loaded Multiwavelength Microwave Cavity. Phys. Rev. Lett. 2022, 129, 201301. [Google Scholar] [CrossRef]
- Baryakhtar, M.; Huang, J.; Lasenby, R. Axion and hidden photon dark matter detection with multilayer optical haloscopes. Phys. Rev. D 2018, 98, 035006. [Google Scholar] [CrossRef]
- Chiles, J.; Charaev, I.; Lasenby, R.; Baryakhtar, M.; Huang, J.; Roshko, A.; Burton, G.; Colangelo, M.; Tilburg, K.V.; Arvanitaki, A.; et al. New Constraints on Dark Photon Dark Matter with Superconducting Nanowire Detectors in an Optical Haloscope. Phys. Rev. Lett. 2022, 128, 231802. [Google Scholar] [CrossRef] [PubMed]
- Manenti, L.; Mishra, U.; Bruno, G.; Giovanni, A.D.; Millar, A.J.; Morå, K.D.; Pasricha, R.; Roberts, H.; Oikonomou, P.; Sarnoff, I.; et al. Search for dark photons using a multilayer dielectric haloscope equipped with a single-photon avalanche diode. Phys. Rev. D 2022, 105, 052010. [Google Scholar] [CrossRef]
- McAllister, B.T.; Flower, G.; Tobar, L.E.; Tobar, M.E. Tunable Supermode Dielectric Resonators for Axion Dark-Matter Haloscopes. Phys. Rev. Appl. 2018, 9, 014028. [Google Scholar] [CrossRef]
- Quiskamp, A.P.; McAllister, B.T.; Rybka, G.; Tobar, M.E. Dielectric-Boosted Sensitivity to Cylindrical Azimuthally Varying Transverse-Magnetic Resonant Modes in an Axion Haloscope. Phys. Rev. Appl. 2020, 14, 044051. [Google Scholar] [CrossRef]
- O’Hare, C.A.J.; Green, A.M. Axion astronomy with microwave cavity experiments. Phys. Rev. D 2017, 95, 063017. [Google Scholar] [CrossRef]
- Knirck, S.; Millar, A.J.; O’Hare, C.A.J.; Redondo, J.; Steffen, F.D. Directional axion detection. J. Cosmol. Astropart. Phys. 2018, 11, 051. [Google Scholar] [CrossRef]
- O’Hare, C.A.J.; McCabe, C.; Evans, N.W.; Myeong, G.; Belokurov, V. Dark matter hurricane: Measuring the S1 stream with dark matter detectors. Phys. Rev. D 2018, 98, 103006. [Google Scholar] [CrossRef]
- Tinyakov, P.; Tkachev, I.; Zioutas, K. Tidal streams from axion miniclusters and direct axion searches. J. Cosmol. Astropart. Phys. 2016, 2016, 035. [Google Scholar] [CrossRef]
- Berezinsky, V.; Dokuchaev, V.; Eroshenko, Y. Formation and internal structure of superdense dark matter clumps and ultracompact minihaloes. J. Cosmol. Astropart. Phys. 2013, 2013, 059. [Google Scholar] [CrossRef]
- Fairbairn, M.; Marsh, D.J.E.; Quevillon, J.; Rozier, S. Structure formation and microlensing with axion miniclusters. Phys. Rev. D 2018, 97, 083502. [Google Scholar] [CrossRef]
- De Miguel, J. A dark matter telescope probing the 6 to 60 GHz band. J. Cosmol. Astropart. Phys. 2021, 4, 75. [Google Scholar] [CrossRef]
- De Miguel, J.; Hernández-Cabrera, J.F. Discovery prospects with the Dark-photons & Axion-Like particles Interferometer–part I. arXix 2023. [Google Scholar] [CrossRef]
- Bersanelli, M.; Mandolesi, N.; Butler, R.C.; Mennella, A.; Villa, F.; Aja, B.; Artal, E.; Artina, E.; Baccigalupi, C.; Balasini, M.; et al. Planck pre-launch status: Design and description of the Low Frequency Instrument. Astron. Astrophys. 2010, 520, A4. [Google Scholar] [CrossRef]
- Rubino-Martin, J.A.; Guidi, F.; Genova-Santos, R.T.; Harper, S.E.; Herranz, D.; Hoyland, R.J.; Lasenby, A.N.; Poidevin, F.; Rebolo, R.; Ruiz-Granados, B.; et al. QUIJOTE scientific results—IV. A northern sky survey in intensity and polarization at 10–20GHz with the Multi-Frequency Instrument. Mon. Not. R. Astron. Soc. 2023, 519, 3383–3431. [Google Scholar] [CrossRef]
- Straniero, O.; Ayala, A.; Giannotti, M.; Mirizzi, A.; Dominguez, I. Axion-Photon Coupling: Astrophysical Constraints. In Proceedings of the AXION-WIMP 2015: 11th Patras Workshop on Axions, WIMPs and WISPs, Zaragoza, Spain, 22–26 June 2015. [Google Scholar] [CrossRef]
- Backes, K.M.; Palken, D.A.; Kenany, S.A.; Brubaker, B.M.; Cahn, S.B.; Droster, A.; Hilton, G.C.; Ghosh, S.; Jackson, H.; Lamoreaux, S.K.; et al. A quantum-enhanced search for dark matter axions. Nature 2021, 590, 238–242. [Google Scholar] [CrossRef]
- Panfilis, S.D.; Melissinos, A.C.; Moskowitz, B.E.; Rogers, J.T.; Semertzidis, Y.K.; Wuensch, W.; Halama, H.J.; Prodell, A.G.; Fowler, W.B.; Nezrick, F.A. Limits on the Abundance and Coupling of Cosmic Axions at 4.5-Microev < m(a) < 5.0-Microev. Phys. Rev. Lett. 1987, 59, 839. [Google Scholar] [CrossRef]
- Hagmann, C.; Sikivie, P.; Sullivan, N.S.; Tanner, D.B. Results from a search for cosmic axions. Phys. Rev. D 1990, 42, 1297–1300. [Google Scholar] [CrossRef]
- Asztalos, S.J.; Carosi, G.; Hagmann, C.; Kinion, D.; Van Bibber, K.; Hotz, M.; Rosenberg, L.J.; Rybka, G.; Hoskins, J.; Hwang, J.; et al. A SQUID-based microwave cavity search for dark-matter axions. Phys. Rev. Lett. 2010, 104, 041301. [Google Scholar] [CrossRef]
- Zhong, L.; Al Kenany, S.; Backes, K.M.; Brubaker, B.M.; Cahn, S.B.; Carosi, G.; Gurevich, Y.V.; Kindel, W.F.; Lamoreaux, S.K.; Lehnert, K.W.; et al. Results from phase 1 of the HAYSTAC microwave cavity axion experiment. Phys. Rev. D 2018, 97, 092001. [Google Scholar] [CrossRef]
- Lee, Y.; Yang, B.; Yoon, H.; Ahn, M.; Park, H.; Min, B.; Kim, D.; Yoo, J. Searching for Invisible Axion Dark Matter with an 18 T Magnet Haloscope. Phys. Rev. Lett. 2022, 128, 241805. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Chang, J.Y.; Chang, Y.C.; Chang, Y.H.; Chang, Y.H.; Chen, C.H.; Chen, C.F.; Chen, K.Y.; Chen, Y.F.; Chiang, W.Y.; et al. Taiwan axion search experiment with haloscope: Designs and operations. Rev. Sci. Instrum. 2022, 93, 084501. [Google Scholar] [CrossRef] [PubMed]
- Álvarez Melcón, A.; Arguedas Cuendis, S.; Baier, J.; Barth, K.; Bräuninger, H.; Calatroni, S.; Cantatore, G.; Caspers, F.; Castel, J.F.; Cetin, S.A.; et al. First results of the CAST-RADES haloscope search for axions at 34.67 μeV. J. High Energy Phys. 2020, 21, 75. [Google Scholar] [CrossRef]
- Boutan, C.; Jones, M.; LaRoque, B.H.; Oblath, N.S.; Cervantes, R.; Du, N.; Force, N.; Kimes, S.; Ottens, R.; Rosenberg, L.J.; et al. Piezoelectrically Tuned Multimode Cavity Search for Axion Dark Matter. Phys. Rev. Lett. 2018, 121, 261302. [Google Scholar] [CrossRef]
- Alesini, D.; Braggio, C.; Carugno, G.; Crescini, N.; D’Agostino, D.; Gioacchino, D.D.; Vora, R.D.; Falferi, P.; Gallo, S.; Gambardella, U.; et al. Galactic axions search with a superconducting resonant cavity. Phys. Rev. D 2019, 99, 101101. [Google Scholar] [CrossRef]
- Bartram, C.; Braine, T.; Burns, E.; Cervantes, R.; Crisosto, N.; Du, N.; Korandla, H.; Leum, G.; Mohapatra, P.; Nitta, T.; et al. Search for Invisible Axion Dark Matter in the 3.3–4.2 μeV Mass Range. Phys. Rev. Lett. 2021, 127, 261803. [Google Scholar] [CrossRef]
- McAllister, B.T.; Flower, G.; Kruger, J.; Ivanov, E.N.; Goryachev, M.; Bourhill, J.; Tobar, M.E. The ORGAN Experiment: An axion haloscope above 15 GHz. Phys. Dark Univ. 2017, 18, 67–72. [Google Scholar] [CrossRef]
- Quiskamp, A.; McAllister, B.T.; Altin, P.; Ivanov, E.N.; Goryachev, M.; Tobar, M.E. Exclusion of ALP Cogenesis Dark Matter in a Mass Window Above 100 μeV. arXiv 2023, arXiv:2310.00904. [Google Scholar]
- Quiskamp, A.; McAllister, B.T.; Altin, P.; Ivanov, E.N.; Goryachev, M.; Tobar, M.E. Direct search for dark matter axions excluding ALP cogenesis in the 63- to 67-μeV range with the ORGAN experiment. Sci. Adv. 2022, 8, eabq3765. [Google Scholar] [CrossRef]
- Liebel, H. High-Field Superconducting Magnets. In High-Field MR Imaging; Springer: Berlin/Heidelberg, Germany, 2012; pp. 7–25. [Google Scholar] [CrossRef]
- McCulloch, M.A.; Grahn, J.; Melhuish, S.J.; Nilsson, P.-A.; Piccirillo, L.; Schleeh, J.; Wadefalk, N. Dependence of noise temperature on physical temperature for cryogenic low-noise amplifiers. J. Astron. Telesc. Instrum. Syst. 2017, 3, 014003. [Google Scholar] [CrossRef]
- Schleeh, J.; Mateos, J.; Íñiguez-de-la-Torre, I.; Wadefalk, N.; Nilsson, P.A.; Grahn, J.; Minnich, A.J. Phonon black-body radiation limit for heat dissipation in electronics. Nat. Mater. 2015, 14, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Cabrera, J.F.; De Miguel, J.; Hernández-Suárez, E.; Joven-Álvarez, E.; Lorenzo-Hernández, H.; Otani, C.; Rapado-Tamarit, M.A.; Rubiño-Martín, J.A.; DALI Collaboration. Experimental measurement of the quality factor of a Fabry-Pérot open-cavity axion haloscope. arXiv 2023, arXiv:2310.16013. [Google Scholar]
- Di Luzio, L.; Mescia, F.; Nardi, E. Redefining the Axion Window. Phys. Rev. Lett. 2017, 118, 031801. [Google Scholar] [CrossRef]
- Perot, A.; Fabry, C. On the Application of Interference Phenomena to the Solution of Various Problems of Spectroscopy and Metrology. Astrophys. J. 1899, 9, 87. [Google Scholar] [CrossRef]
- Dicke, R.H. The Measurement of Thermal Radiation at Microwave Frequencies. Rev. Sci. Instrum. 1949, 17, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Renk, K.F. Basics of Laser Physics: For Students of Science and Engineering; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Brubaker, B.M.; Zhong, L.; Lamoreaux, S.K.; Lehnert, K.W.; van Bibber, K.A. HAYSTAC axion search analysis procedure. Phys. Rev. D 2017, 96, 123008. [Google Scholar] [CrossRef]
- Gambron, P.; Thorne, S. Comparison of Several FFT Libraries in C/C++; Technical Report RAL-TR-2020-003; UK Research and Innovation: Swindon, UK, 2020. [Google Scholar] [CrossRef]
- Gallego, J.D.; López-Fernández, I.; Diez, C.; Barcia, A. Experimental results of gain fluctuations and noise in microwave low-noise cryogenic amplifiers. In Proceedings of the Second International Symposium on Fluctuations and Noise, Maspalomas, Gran Canaria Island, Spain, 26–28 May 2004. [Google Scholar] [CrossRef]
- Schmid, M.; Rath, D.; Diez, C.; Diebold, U. Why and How Savitzky–Golay Filters Should Be Replaced. ACS Meas. Sci. Au 2022, 2, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Condon, J.J.; Ransom, S.M. Essential Radio Astronomy; Princeton University Press: Princeton, NJ, USA, 2016. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Cabrera, J.F.; De Miguel, J.; Joven Álvarez, E.; Hernández-Suárez, E.; Rubiño-Martín, J.A.; Otani, C., on behalf of the DALI Collaboration. A Forecast of the Sensitivity of the DALI Experiment to Galactic Axion Dark Matter. Symmetry 2024, 16, 163. https://doi.org/10.3390/sym16020163
Hernández-Cabrera JF, De Miguel J, Joven Álvarez E, Hernández-Suárez E, Rubiño-Martín JA, Otani C on behalf of the DALI Collaboration. A Forecast of the Sensitivity of the DALI Experiment to Galactic Axion Dark Matter. Symmetry. 2024; 16(2):163. https://doi.org/10.3390/sym16020163
Chicago/Turabian StyleHernández-Cabrera, Juan F., Javier De Miguel, Enrique Joven Álvarez, E. Hernández-Suárez, J. Alberto Rubiño-Martín, and Chiko Otani on behalf of the DALI Collaboration. 2024. "A Forecast of the Sensitivity of the DALI Experiment to Galactic Axion Dark Matter" Symmetry 16, no. 2: 163. https://doi.org/10.3390/sym16020163
APA StyleHernández-Cabrera, J. F., De Miguel, J., Joven Álvarez, E., Hernández-Suárez, E., Rubiño-Martín, J. A., & Otani, C., on behalf of the DALI Collaboration. (2024). A Forecast of the Sensitivity of the DALI Experiment to Galactic Axion Dark Matter. Symmetry, 16(2), 163. https://doi.org/10.3390/sym16020163