Temperature-Dependent Phase Variations in Van Der Waals CdPS3 Revealed by Raman Spectroscopy
Abstract
:1. Introduction
2. Results and Discussions
3. Conclusions
4. Methods
4.1. Material Fabrication
4.2. Optical Characterization
4.3. Electron Microscopy Characterization
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A.H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.; Lu, Y. Nano-engineering and nano-manufacturing in 2D materials: Marvels of nanotechnology. Nanoscale Horiz. 2022, 7, 849–872. [Google Scholar] [CrossRef] [PubMed]
- Tebyetekerwa, M.; Zhang, J.; Saji, S.E.; Wibowo, A.A.; Rahman, S.; Truong, T.N.; Lu, Y.; Yin, Z.; Macdonald, D.; Nguyen, H.T. Twist-driven wide freedom of indirect interlayer exciton emission in MoS2/WS2 heterobilayers. Cell Rep. Phys. Sci. 2021, 2, 100509. [Google Scholar] [CrossRef]
- Sun, X.; Zhu, Y.; Qin, H.; Liu, B.; Tang, Y.; Lü, T.; Rahman, S.; Yildirim, T.; Lu, Y. Enhanced interactions of interlayer excitons in free-standing heterobilayers. Nature 2022, 610, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, V.; Mensah, R.A.; Babu, K.; Gawusu, S.; Chanda, A.; Tu, Y.; Neisiany, R.E.; Försth, M.; Sas, G.; Das, O. A Review of the Synthesis, Properties, and Applications of 2D Materials. Part. Part. Syst. Charact. 2022, 39, 2200031. [Google Scholar] [CrossRef]
- Khan, K.; Tareen, A.K.; Aslam, M.; Wang, R.; Zhang, Y.; Mahmood, A.; Ouyang, Z.; Zhang, H.; Guo, Z. Recent developments in emerging two-dimensional materials and their applications. J. Mater. Chem. C 2020, 8, 387–440. [Google Scholar] [CrossRef]
- Healey, A.J.; Rahman, S.; Scholten, S.C.; Robertson, I.O.; Abrahams, G.J.; Dontschuk, N.; Liu, B.; Hollenberg, L.C.L.; Lu, Y.; Tetienne, J.-P. Varied Magnetic Phases in a van der Waals Easy-Plane Antiferromagnet Revealed by Nitrogen-Vacancy Center Microscopy. ACS Nano 2022, 16, 12580–12589. [Google Scholar] [CrossRef]
- Khan, A.R.; Zhang, L.; Ishfaq, K.; Ikram, A.; Yildrim, T.; Liu, B.; Rahman, S.; Lu, Y. Optical Harmonic Generation in 2D Materials. Adv. Funct. Mater. 2022, 32, 2105259. [Google Scholar] [CrossRef]
- Vogl, T.; Doherty, M.W.; Buchler, B.C.; Lu, Y.; Lam, P.K. Atomic localization of quantum emitters in multilayer hexagonal boron nitride. Nanoscale 2019, 11, 14362–14371. [Google Scholar] [CrossRef]
- Pradeep, A.V.; Satya Prasad, S.V.; Suryam, L.V.; Prasanna Kumari, P. A review on 2D materials for bio-applications. Mater. Today Proc. 2019, 19, 380–383. [Google Scholar] [CrossRef]
- Eng, A.Y.S.; Ambrosi, A.; Sofer, Z.; Šimek, P.; Pumera, M. Electrochemistry of Transition Metal Dichalcogenides: Strong Dependence on the Metal-to-Chalcogen Composition and Exfoliation Method. ACS Nano 2014, 8, 12185–12198. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Li, Z.; Zhang, L.; Wang, B.; Luo, Z.; Long, J.; Yang, J.; Fu, L.; Lu, Y. High-Efficiency Monolayer Molybdenum Ditelluride Light-Emitting Diode and Photodetector. ACS Appl. Mater. Interfaces 2018, 10, 43291–43298. [Google Scholar] [CrossRef] [PubMed]
- Wurdack, M.; Yun, T.; Estrecho, E.; Syed, N.; Bhattacharyya, S.; Pieczarka, M.; Zavabeti, A.; Chen, S.; Haas, B.; Müller, J.; et al. Ultrathin Ga2O3 Glass: A Large-Scale Passivation and Protection Material for Monolayer WS2. Adv. Mater. 2021, 33, 2005732. [Google Scholar] [CrossRef] [PubMed]
- Ambrosi, A.; Chua, C.K.; Latiff, N.M.; Loo, A.H.; Wong, C.H.A.; Eng, A.Y.S.; Bonanni, A.; Pumera, M. Graphene and its electrochemistry—An update. Chem. Soc. Rev. 2016, 45, 2458–2493. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Christopher, J.W.; Swan, A.K. 2D Raman band splitting in graphene: Charge screening and lifting of the K-point Kohn anomaly. Sci. Rep. 2017, 7, 13539. [Google Scholar] [CrossRef] [PubMed]
- Brownson, D.A.C.; Munro, L.J.; Kampouris, D.K.; Banks, C.E. Electrochemistry of graphene: Not such a beneficial electrode material? RSC Adv. 2011, 1, 978–988. [Google Scholar] [CrossRef]
- Chia, X.; Eng, A.Y.S.; Ambrosi, A.; Tan, S.M.; Pumera, M. Electrochemistry of Nanostructured Layered Transition-Metal Dichalcogenides. Chem. Rev. 2015, 115, 11941–11966. [Google Scholar] [CrossRef]
- Zhang, X.; Qiao, X.-F.; Shi, W.; Wu, J.-B.; Jiang, D.-S.; Tan, P.-H. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 2015, 44, 2757–2785. [Google Scholar] [CrossRef]
- Saito, R.; Tatsumi, Y.; Huang, S.; Ling, X.; Dresselhaus, M.S. Raman spectroscopy of transition metal dichalcogenides. J. Phys. Condens. Matter 2016, 28, 353002. [Google Scholar] [CrossRef]
- Liu, H.; Du, Y.; Deng, Y.; Ye, P.D. Semiconducting black phosphorus: Synthesis, transport properties and electronic applications. Chem. Soc. Rev. 2015, 44, 2732–2743. [Google Scholar] [CrossRef] [PubMed]
- Brec, R. Review on Structural and Chemical Properties of Transition Metal Phosphorous Trisulfides MPS3. Solid State Ion. 1986, 22, 3–30. [Google Scholar] [CrossRef]
- Latiff, N.M.; Mayorga-Martinez, C.C.; Khezri, B.; Szokolova, K.; Sofer, Z.; Fisher, A.C.; Pumera, M. Cytotoxicity of layered metal phosphorus chalcogenides (MPXY) nanoflakes; FePS3, CoPS3, NiPS3. FlatChem 2018, 12, 1–9. [Google Scholar] [CrossRef]
- Chittari, B.L.; Park, Y.; Lee, D.; Han, M.; MacDonald, A.H.; Hwang, E.; Jung, J. Electronic and magnetic properties of single-layer MPX3 metal phosphorous trichalcogenides. Phys. Rev. B 2016, 94, 184428. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, X.; Wu, D.; Jing, Y.; Zhou, Z. MnPSe3 Monolayer: A Promising 2D Visible-Light Photohydrolytic Catalyst with High Carrier Mobility. Adv. Sci. 2016, 3, 1600062. [Google Scholar] [CrossRef]
- Brec, R.; Ouvrard, G.; Rouxel, J. Relationship between structure parameters and chemical properties in some MPS3 layered phases. Mater. Res. Bull. 1985, 20, 1257–1263. [Google Scholar] [CrossRef]
- Rahman, S.; Yildirim, T.; Tebyetekerwa, M.; Khan, A.R.; Lu, Y. Extraordinary Nonlinear Optical Interaction from Strained Nanostructures in van der Waals CuInP2S6. ACS Nano 2022, 16, 13959–13968. [Google Scholar] [CrossRef]
- Rahman, S.; Liu, B.; Wang, B.; Tang, Y.; Lu, Y. Giant Photoluminescence Enhancement and Resonant Charge Transfer in Atomically Thin Two-Dimensional Cr2Ge2Te6/WS2 Heterostructures. ACS Appl. Mater. Interfaces 2021, 13, 7423–7433. [Google Scholar] [CrossRef]
- Frindt, R.F.; Yang, D.; Westreich, P. Exfoliated single molecular layers of Mn0.8PS3 and Cd0.8PS3. J. Mater. Res. 2005, 20, 1107–1112. [Google Scholar] [CrossRef]
- Kuzminskii, Y.V.; Voronin, B.M.; Redin, N.N. Iron and nickel phosphorus trisulfides as electroactive materials for primary lithium batteries. J. Power Sources 1995, 55, 133–141. [Google Scholar] [CrossRef]
- Liang, Q.; Zheng, Y.; Du, C.; Luo, Y.; Zhang, J.; Li, B.; Zong, Y.; Yan, Q. General and Scalable Solid-State Synthesis of 2D MPS3 (M = Fe, Co, Ni) Nanosheets and Tuning Their Li/Na Storage Properties. Small Methods 2017, 1, 1700304. [Google Scholar] [CrossRef]
- Ismail, N.; Madian, M.; El-Meligi, A.A. Synthesis of NiPS3 and CoPS and its hydrogen storage capacity. J. Alloys Compd. 2014, 588, 573–577. [Google Scholar] [CrossRef]
- Byvik, C.E.; Smith, B.T.; Reichman, B. Layered transition metal thiophosphates (MPX3) as photoelectrodes in photoelectrochemical cells. Sol. Energy Mater. 1982, 7, 213–223. [Google Scholar] [CrossRef]
- Du, K.-Z.; Wang, X.-Z.; Liu, Y.; Hu, P.; Utama, M.I.B.; Gan, C.K.; Xiong, Q.; Kloc, C. Weak Van der Waals Stacking, Wide-Range Band Gap, and Raman Study on Ultrathin Layers of Metal Phosphorus Trichalcogenides. ACS Nano 2016, 10, 1738–1743. [Google Scholar] [CrossRef] [PubMed]
- Tedeschi, D.; Blundo, E.; Felici, M.; Pettinari, G.; Liu, B.; Yildrim, T.; Petroni, E.; Zhang, C.; Zhu, Y.; Sennato, S.; et al. Controlled Micro/Nanodome Formation in Proton-Irradiated Bulk Transition-Metal Dichalcogenides. Adv. Mater. 2019, 31, 1903795. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Shifa, T.A.; Yu, P.; He, P.; Liu, Y.; Wang, F.; Wang, Z.; Zhan, X.; Lou, X.; Xia, F.; et al. New Frontiers on van der Waals Layered Metal Phosphorous Trichalcogenides. Adv. Funct. Mater. 2018, 28, 1802151. [Google Scholar] [CrossRef]
- Le Flem, G.; Brec, R.; Ouvard, G.; Louisy, A.; Segransan, P. Magnetic interactions in the layer compounds MPX3 (M = Mn, Fe, Ni; X = S, Se). J. Phys. Chem. Solids 1982, 43, 455–461. [Google Scholar] [CrossRef]
- Lee, J.-U.; Lee, S.; Ryoo, J.H.; Kang, S.; Kim, T.Y.; Kim, P.; Park, C.-H.; Park, J.-G.; Cheong, H. Ising-Type Magnetic Ordering in Atomically Thin FePS3. Nano Lett. 2016, 16, 7433–7438. [Google Scholar] [CrossRef]
- Kim, K.; Lim, S.Y.; Lee, J.-U.; Lee, S.; Kim, T.Y.; Park, K.; Jeon, G.S.; Park, C.-H.; Park, J.-G.; Cheong, H. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3. Nat. Commun. 2019, 10, 345. [Google Scholar] [CrossRef]
- Rahman, S.; Torres, J.F.; Khan, A.R.; Lu, Y. Recent Developments in van der Waals Antiferromagnetic 2D Materials: Synthesis, Characterization, and Device Implementation. ACS Nano 2021, 15, 17175–17213. [Google Scholar] [CrossRef]
- Oliva, R.; Ritov, E.; Horani, F.; Etxebarria, I.; Budniak, A.K.; Amouyal, Y.; Lifshitz, E.; Guennou, M. Lattice dynamics and in-plane antiferromagnetism in MnxZn1-xPS3 across the entire composition range. Phys. Rev. B 2023, 107, 104415. [Google Scholar] [CrossRef]
- Kim, K.; Lim, S.Y.; Kim, J.; Lee, J.-U.; Lee, S.; Kim, P.; Park, K.; Son, S.; Park, C.-H.; Park, J.-G.; et al. Antiferromagnetic ordering in van der Waals 2D magnetic material MnPS3 probed by Raman spectroscopy. 2D Mater. 2019, 6, 041001. [Google Scholar] [CrossRef]
- Liu, P.; Xu, Z.; Huang, H.; Li, J.; Feng, C.; Huang, M.; Zhu, M.; Wang, Z.; Zhang, Z.; Hou, D.; et al. Exploring the magnetic ordering in atomically thin antiferromagnetic MnPSe3 by Raman spectroscopy. J. Alloys Compd. 2020, 828, 154432. [Google Scholar] [CrossRef]
- Mayorga-Martinez, C.C.; Sofer, Z.; Sedmidubský, D.; Huber, Š.; Eng, A.Y.S.; Pumera, M. Layered Metal Thiophosphite Materials: Magnetic, Electrochemical, and Electronic Properties. ACS Appl. Mater. Interfaces 2017, 9, 12563–12573. [Google Scholar] [CrossRef]
- Lifshitz, E.; Francis, A.H.; Clarke, R. An ESR and X-ray diffraction study of a first-order phase transition in CdPS3. Solid State Commun. 1983, 45, 273–276. [Google Scholar] [CrossRef]
- Niu, M.; Cheng, H.; Li, X.; Yu, J.; Yang, X.; Gao, Y.; Liu, R.; Cao, Y.; He, K.; Xie, X.; et al. Pressure-induced phase transitions in weak interlayer coupling CdPS3. Appl. Phys. Lett. 2022, 120, 233104. [Google Scholar] [CrossRef]
- Qian, X.; Chen, L.; Yin, L.; Liu, Z.; Pei, S.; Li, F.; Hou, G.; Chen, S.; Song, L.; Thebo, K.H.; et al. CdPS3 nanosheets-based membrane with high proton conductivity enabled by Cd vacancies. Science 2020, 370, 596–600. [Google Scholar] [CrossRef]
- Shakoor, A.; Hussain, F.; Hassan, N.; Majid, A.; Bhatti, M.T.; Siddique, H. A density functional theory study of Raman modes of cadmium hexathiohypodiphosphate (CdPS). Mater. Sci.-Pol. 2015, 33, 286–291. [Google Scholar] [CrossRef]
- Boucher, F.; Evain, M.; Brec, R. Phase transition upon d10 Cd2+ ordering in CdPS3. Acta Crystallogr. Sect. B-Struct. Sci. 1995, 51, 952–961. [Google Scholar] [CrossRef]
- Sekine, T.; Ohmamiuda, A.; Tanokura, Y.; Makimura, C.; Kurosawa, K. Raman-Scattering Study of Structural Phase Transition in Layered Compound CdPS3. J. Phys. Soc. Jpn. 1993, 62, 800–807. [Google Scholar] [CrossRef]
- Covino, J.; Dragovich, P.; Lowe-Ma, C.K.; Kubin, R.F.; Schwartz, R.W. Synthesis and characterization of stoichiometric CdPS3. Mater. Res. Bull. 1985, 20, 1099–1107. [Google Scholar] [CrossRef]
- Hangyo, M.; Nakashima, S.; Mitsuishi, A.; Kurosawa, K.; Saito, S. Raman spectra of MnPS3 intercalated with pyridine. Solid State Commun. 1988, 65, 419–423. [Google Scholar] [CrossRef]
- Kuo, C.-T.; Neumann, M.; Balamurugan, K.; Park, H.J.; Kang, S.; Shiu, H.W.; Kang, J.H.; Hong, B.H.; Han, M.; Noh, T.W.; et al. Exfoliation and Raman Spectroscopic Fingerprint of Few-Layer NiPS3 Van der Waals Crystals. Sci. Rep. 2016, 6, 20904. [Google Scholar] [CrossRef] [PubMed]
- Mathey, Y.; Clement, R.; Sourisseau, C.; Lucazeau, G. Vibrational study of layered MPX3 compounds and of some intercalates with Co(.eta.5-C5H5)2+ or Cr(.eta.6-C6H6)2+. Inorg. Chem. 1980, 19, 2773–2779. [Google Scholar] [CrossRef]
- Cao, Q.; Dai, Y.-W.; Xu, J.; Chen, L.; Zhu, H.; Sun, Q.-Q.; Zhang, D.W. Realizing Stable p-Type Transporting in Two-Dimensional WS2 Films. ACS Appl. Mater. Interfaces 2017, 9, 18215–18221. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Xu, D.; Feng, Y.; Zhang, G.; Lin, P.; Chen, X. P-Type 2D Semiconductors for Future Electronics. Adv. Mater. 2023, 35, 2206939. [Google Scholar] [CrossRef] [PubMed]
- Jenjeti, R.N.; Kumar, R.; Austeria, M.P.; Sampath, S. Field Effect Transistor Based on Layered NiPS3. Sci. Rep. 2018, 8, 8586. [Google Scholar] [CrossRef]
- Rahman, S.; Othman NA, F.; Hatta SW, M.; Soin, N. Optimization of Graded AlInN/AlN/GaN HEMT Device Performance Based on Quaternary Back Barrier for High Power Application. ECS J. Solid State Sci. Technol. 2017, 6, P805. [Google Scholar] [CrossRef]
- Rahman, S.; Hatta SW, M.; Soin, N. Analytical Optimization of AlGaN/GaN/AlGaN DH-HEMT Device Performance Based on Buffer Characteristics. ECS J. Solid State Sci. Technol. 2019, 8, P165. [Google Scholar] [CrossRef]
- Lu, Z.; Neupane, G.P.; Jia, G.; Zhao, H.; Qi, D.; Du, Y.; Lu, Y.; Yin, Z. 2D Materials Based on Main Group Element Compounds: Phases, Synthesis, Characterization, and Applications. Adv. Funct. Mater. 2020, 30, 2001127. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, S.; Ngyuen, H.; Macdonald, D.; Lu, Y. Temperature-Dependent Phase Variations in Van Der Waals CdPS3 Revealed by Raman Spectroscopy. Symmetry 2024, 16, 140. https://doi.org/10.3390/sym16020140
Rahman S, Ngyuen H, Macdonald D, Lu Y. Temperature-Dependent Phase Variations in Van Der Waals CdPS3 Revealed by Raman Spectroscopy. Symmetry. 2024; 16(2):140. https://doi.org/10.3390/sym16020140
Chicago/Turabian StyleRahman, Sharidya, Hieu Ngyuen, Daniel Macdonald, and Yuerui Lu. 2024. "Temperature-Dependent Phase Variations in Van Der Waals CdPS3 Revealed by Raman Spectroscopy" Symmetry 16, no. 2: 140. https://doi.org/10.3390/sym16020140
APA StyleRahman, S., Ngyuen, H., Macdonald, D., & Lu, Y. (2024). Temperature-Dependent Phase Variations in Van Der Waals CdPS3 Revealed by Raman Spectroscopy. Symmetry, 16(2), 140. https://doi.org/10.3390/sym16020140