Special Issue: Fixed-Point Theory and Its Applications, Dedicated to the Memory of Professor William Arthur Kirk
Conflicts of Interest
References
- Alhazmi, S.E.; Mahdy, A.M.S.; Abdou, M.A.; Mohamed, D.S. Computational Techniques for Solving Mixed (1 + 1) Dimensional Integral Equations with Strongly Symmetric Singular Kernel. Symmetry 2023, 15, 1284. [Google Scholar] [CrossRef]
- Omran, S.; Masmali, I.; Alhamzi, G. Banach Fixed Point Theorems in Generalized Metric Space Endowed with the Hadamard Product. Symmetry 2023, 15, 1325. [Google Scholar] [CrossRef]
- Abusalim, S.M.; Abdou, M.A.; Abdel-Aty, M.A.; Nasr, M.E. Hybrid Functions Approach via Nonlinear Integral Equations with Symmetric and Nonsymmetrical Kernel in Two Dimensions. Symmetry 2023, 15, 1408. [Google Scholar] [CrossRef]
- Abbas, A.; Ali, A.; Al Sulami, H.; Hussain, A. Recent Advancements in KRH-Interpolative-Type Contractions. Symmetry 2023, 15, 1515. [Google Scholar] [CrossRef]
- Zaslavski, A.J. Three Convergence Results for Iterates of Nonlinear Mappings in Metric Spaces with Graphs. Symmetry 2023, 15, 1756. [Google Scholar] [CrossRef]
- Bachar, M.; Khamsi, M.A.; Méndez, O. Uniform Convexity in Variable Exponent Sobolev Spaces. Symmetry 2023, 15, 1988. [Google Scholar] [CrossRef]
- Amri, A.E.; Khamsi, M.A.; Méndez, O.D. A Fixed Point Theorem in the Lebesgue Spaces of Variable Integrability Lp(·). Symmetry 2023, 15, 1999. [Google Scholar] [CrossRef]
- Cichon, M.; Cichon, K. On Normed Algebras and the Generalized Maligranda–Orlicz Lemma. Symmetry 2024, 16, 56. [Google Scholar] [CrossRef]
- Kimura, Y. Common Fixed-Point Theorem and Projection Method on a Hadamard Space. Symmetry 2024, 16, 483. [Google Scholar] [CrossRef]
- Khan, A.U.; Samreen, M.; Hussain, A.; Sulami, H.A. Best Proximity Point Results for Multi-Valued Mappings in Generalized Metric Structure. Symmetry 2024, 16, 502. [Google Scholar] [CrossRef]
- Zaslavski, A.J. Existence of a Fixed Point and Convergence of Iterates for Self-Mappings of Metric Spaces with Graphs. Symmetry 2024, 16, 705. [Google Scholar] [CrossRef]
- Nieto, J.J.; Yadav, A.; Mathur, T.; Agarwal, S. Fixed Point Method for Nonlinear Fractional Differential Equations with Integral Boundary Conditions on Tetramethyl-Butane Graph. Symmetry 2024, 16, 756. [Google Scholar] [CrossRef]
- Bin Dehaish, B.A.; Khamsi, M.A. Fixed Point of α-Modular Nonexpanive Mappings in Modular Vector Spaces ℓp(·). Symmetry 2024, 16, 799. [Google Scholar] [CrossRef]
- Francis, D.; Okeke, G.A.; Khan, S.H. Some Common Fixed Point Results of Tower Mappings in (Pseudo)modular Metric Spaces. Symmetry 2024, 16, 896. [Google Scholar] [CrossRef]
- Huang, S.-Y.; Du, W.-S. New Fixed Point Theorems for Generalized Meir–Keeler Type Nonlinear Mappings with Applications to Fixed Point Theory. Symmetry 2024, 16, 1088. [Google Scholar] [CrossRef]
- Jun-On, N.; Cholamjiak, W. Enhanced Double Inertial Forward–Backward Splitting Algorithm for Variational Inclusion Problems: Applications in Mathematical Integrated Skill Prediction. Symmetry 2024, 16, 1091. [Google Scholar] [CrossRef]
- Jafarian, A.; Nia, S.M.; Golmankhaneh, A.K.; Baleanu, D. On Bernstein Polynomials Method to the System of Abel Integral Equations. Abstr. Appl. Anal. 2014, 2014, 796286. [Google Scholar] [CrossRef]
- Noeiaghdam, S.; Micula, S. A novel method for solving second kind Volterra integral equations with discontinuous kernel. Mathematics 2021, 9, 2172. [Google Scholar] [CrossRef]
- Nadir, M. Numerical Solution of the Singular Integral Equations of the First Kind on the Curve. Ser. Mat. Inform. 2013, 51, 109–116. [Google Scholar] [CrossRef]
- Khairullina, L.E.; Makletsov, S.V. Wavelet-collocation method of solving singular integral equation. Indian. J. Sci. Technol. 2017, 10, 1–5. [Google Scholar] [CrossRef]
- Gabdulkhaev, B.G.; Tikhonov, I.N. Methods for solving a singular integral equation with cauchy kernel on the real line. Differ. Equ. 2008, 44, 980–990. [Google Scholar] [CrossRef]
- Du, J. On the collocation methods for singular integral equations with hilbert kernel. Math. Comput. 2009, 78, 891–928. [Google Scholar] [CrossRef]
- Shali, J.A.; Akbarfam, A.J.; Kashfi, M. Application of Chebyshev polynomials to the approximate solution of singular integral equations of the first kind with cauchy kernel on the real half-line. Commun. Math. Appl. 2013, 4, 21–28. [Google Scholar]
- Nadir, M. Approximation solution for singular integral equations with logarithmic kernel using adapted linear spline. J. Theor. Appl. Comput. Sci. 2016, 10, 19–25. [Google Scholar]
- Perov, A.I. On the Cauchy problem for a system of ordinary differential equations. Pviblizhen. Met. Reshen. Differ. Uvavn. 1964, 2, 115–134. [Google Scholar]
- Ali, M.U.; Kim, J.K. An extension of vector-valued metric space and Perov’s fixed point theorem. Nonlinear Anal. Convex Anal. 2019, 2114, 12–20. [Google Scholar]
- Filip, A.D.; Petrusel, A. Fixed point theorems on spaces endowed with vector-valued metrics. Fixed Point Theory Appl. 2010, 2010, 281381. [Google Scholar] [CrossRef]
- Hosseinzadeh, H. Some fixed point theorems in generalized metric spaces endowed with vector-valued metrics and application in nonlinear matrix equations. Sahand Commun. Math. Anal. 2020, 17, 37–53. [Google Scholar]
- Hosseinzadeh, H.; Jabbari, A.; Razani, A. Fixed point theorems and common fixed point theorems on spaces equipped with vector-valued metrics. Ukr. Math. J. 2013, 65, 814–822. [Google Scholar] [CrossRef]
- O’Regan, D.; Petrusell, A. Fixed point theorems for generalized contractions in ordered metric spaces. J. Math. Anal. Appl. 2008, 341, 1241–1252. [Google Scholar] [CrossRef]
- O’Regan, D.; Shahzad, N.; Agarwal, R.P. Fixed Point Theory for Generalized Contractive Maps on Spaces with Vector-Valued Metrics. Fixed Point Theory Appl. 2007, 6, 143–149. [Google Scholar]
- Xu, S.; Han, Y.; Alesksic, S.; Radenovixcx, S. Fixed point results for nonlinear contractions of Perov type in abstract metric spaces with applications. Aims Math. 2022, 7, 14895–14921. [Google Scholar] [CrossRef]
- Bakhshayesh, S.J. Discontinuous Galerkin approximations for Volterra integral equations of the first kind with convolution kernel. Indian J. Sci. Technol. 2015, 8, 33. [Google Scholar] [CrossRef]
- Brezinski, C.; Redivo-Zalglia, M. Extrapolation methods for the numerical solution of nonlinear Fredholm integral equations. J. Integral Equat. Appl. 2019, 31, 29–57. [Google Scholar] [CrossRef]
- Mirzaee, F. Numerical solution of system of linear integral equations via improvement of block-pulse functions. J. Math. Model. 2016, 4, 133–159. [Google Scholar]
- Czerwik, S. Contraction mappings in b-metric spaces. In Acta Mathematica et Informatica Universitatis Ostraviensis; University of Ostrava: Ostrava, Czech Republic, 1993. [Google Scholar]
- Chifu, L.C.; Karapinar, E. Admissible hybrid Z-contractions in b-metric spaces. Axioms 2019, 9, 2. [Google Scholar] [CrossRef]
- Lukács, S.; Kajántó, A. Fixed point theorems for various types of F-contractions in complete b-metric spaces. Fixed Point Theory 2018, 19, 321–334. [Google Scholar] [CrossRef]
- Miculescu, R.; Mihail, A. New fixed point theorems for set-valued contractions in b-metric spaces. J. Fixed Point Theory 2017, 19, 2153–2163. [Google Scholar] [CrossRef]
- Aleomraninejad, S.M.A.; Rezapour, S.; Shahzad, N. Some fixed point results on a metric space with a graph. Topol. Appl. 2012, 159, 659–663. [Google Scholar] [CrossRef]
- Bojor, F. Fixed point of f-contraction in metric spaces endowed with a graph. Ann. Univ. Craiova Math. Comput. Sci. Ser. 2010, 37, 85–92. [Google Scholar]
- Bojor, F. Fixed point theorems for Reich type contractions on metric spaces with a graph. Nonlinear Anal. 2012, 75, 3895–3901. [Google Scholar] [CrossRef]
- Jachymski, J. The contraction principle for mappings on a metric space with a graph. Proc. Am. Math. Soc. 2008, 136, 1359–1373. [Google Scholar] [CrossRef]
- Petrusel, A.; Petrusel, G.; Yao, J.C. Multi-valued graph contraction principle with applications. Optimization 2020, 69, 1541–1556. [Google Scholar] [CrossRef]
- Petrusel, A.; Petrusel, G.; Yao, J.C. Graph contractions in vector-valued metric spaces and applications. Optimization 2021, 70, 763–775. [Google Scholar] [CrossRef]
- Samei, M.E. Some fixed point results on intuitionistic fuzzy metric spaces with a graph. Sahand Commun. Math. Anal. 2019, 13, 141–152. [Google Scholar]
- Ran, A.C.; Reurings, M.C.B. A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 2004, 132, 1435–1443. [Google Scholar] [CrossRef]
- Dinca, G.; Matei, P. Geometry of Sobolev spaces with variable exponent: Smoothness and uniform convexity. Comptes Rendus Math. 2009, 347, 885–889. [Google Scholar] [CrossRef]
- Diening, L.; Harjulehto, P.; Hästö, P.; Ruzicka, M. Lebesgue and Sobolev Spaces with Variable Exponents; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2011; Volume 2017. [Google Scholar]
- Kovácik, O.; Rákosník, J. On spaces Lp(x) and Wk,p(x). Czechoslov. Math. J. 1991, 41, 592–618. [Google Scholar]
- Fan, X.; Zhao, D. On the spaces Lp(x)(Ω) and Wm,p(x)(Ω). J. Math. Anal. Appl. 2001, 263, 424–446. [Google Scholar] [CrossRef]
- Orlicz, W. Über Konjugierte Exponentenfolgen. Stud. Math. 1931, 3, 200–211. [Google Scholar] [CrossRef]
- Rajagopal, K.; Ružicka, M. On the modeling of electrorheological materials. Mech. Res. Commun. 1996, 23, 401–407. [Google Scholar] [CrossRef]
- Ruzicka, M. Electrorheological Fluids: Modeling and Mathematical Theory; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2000; Volume 1748. [Google Scholar]
- Chen, J.; Liao, W. Design, testing and control of a magnetorheological actuator for assistive knee braces. Smart Mater. Struct. 2010, 19, 035029. [Google Scholar] [CrossRef]
- Choi, S.H.; Kim, S.; Kim, P.; Park, J.; Choi, S.B. A new visual feedback-based magnetorheological haptic master for robot-assisted minimally invasive surgery. Smart Mater. Struct. 2015, 24, 065015. [Google Scholar] [CrossRef]
- Bansevicius, R.; Virbalis, J.A. Two-dimensional Braille readers based on electrorheological fluid valves controlled by electric field. Mechatronics 2007, 17, 570–577. [Google Scholar] [CrossRef]
- Spencer, B.; Yang, G.; Carlson, J.; Sain, M. Smart Dampers for Seismic Protection of Structures: A Full-Scale Study. In Proceedings of the Second World Conference on Structural Control, Kyoto, Japan, 28 June–1 July 1998. [Google Scholar]
- Maligranda, L.; Orlicz, W. On some properties of functions of generalized variation. Monatshefte Math. 1987, 104, 53–65. [Google Scholar] [CrossRef]
- Banas, J.; Olszowy, L. On a class of measures of noncompactness in Banach algebras and their application to nonlinear integral equations. Zeit. Anal. Anwendungen 2009, 28, 475–498. [Google Scholar] [CrossRef]
- Nussbaum, R.D. A quadratic integral equation. Ann. Della Sc. Norm. Super. Pisa-Cl. Sci. 1980, 7, 375–480. [Google Scholar]
- Castillo, R.E.; Trousselot, E. A generalization of the Maligranda-Orlicz lemma. J. Inequal. Pure Appl. Math. 2007, 8, 115. [Google Scholar]
- Reinwand, S.; Kasprzak, P. Multiplication operators in BV spaces. Ann. Mat. 2023, 202, 787–826. [Google Scholar] [CrossRef]
- Kantorowitz, R. A unifying view of some Banach algebras. Aust. J. Math. Anal. Appl. 2023, 20, 7. [Google Scholar]
- Kirk, W.A. A fixed point theorem for mappings which do not increase distances. Am. Math. Mon. 1965, 72, 1004–1006. [Google Scholar] [CrossRef]
- Baillon, J.-B. Un théorème de type ergodique pour les contractions non linéaires dans un espace de Hilbert. C. R. Acad. Sci. Paris Sér. A-B 1975, 280, A1511–A1514. [Google Scholar]
- Mann, W.R. Mean value methods in iteration. Proc. Am. Math. Soc. 1953, 4, 506–510. [Google Scholar] [CrossRef]
- Wittmann, R. Approximation of fixed points of nonexpansive mappings. Arch. Math. 1992, 58, 486–491. [Google Scholar] [CrossRef]
- Halpern, B. Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 1967, 73, 957–961. [Google Scholar] [CrossRef]
- Amini-Harandi, A. Metric-like spaces, partial metric spaces and fixed points. Fixed Point Theory Appl. 2012, 2012, 204. [Google Scholar] [CrossRef]
- Shukla, S.; Radenovic, S.; Vetro, C. Graphical metric space: A generalized setting in fixed point theory. Rev. Real. Acad. Cienc. Exactas Físicas Nat. Ser. Mat. 2017, 111, 641–655. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B. On a new generalization of metric spaces. J. Fixed Point Theory Appl. 2018, 20, 128. [Google Scholar] [CrossRef]
- Aydi, H.; Felhi, A.; Kamran, T.; Karapinar, E.; Ali, M.U. On Nonlinear Contractions in New Extended b-Metric Spaces. Appl. Appl. Math. 2019, 14, 37. [Google Scholar]
- Arandelovic, I.D.; Keckic, D.J. Symmetric spaces approach to some fixed point results. Nonlinear Anal. Theory Methods Appl. 2012, 75, 5157–5168. [Google Scholar] [CrossRef]
- Alshehri, S.; Arandelovic, I.; Shahzad, N. Symmetric spaces and fixed points of generalized contractions. Abstr. Appl. Anal. 2014, 2014, 763547. [Google Scholar] [CrossRef]
- Xu, X.; Jiang, D.; Yuan, C. Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation. Nonlinear Anal. Theory Methods Appl. 2009, 71, 4676–4688. [Google Scholar] [CrossRef]
- Bhatter, S.; Mathur, A.; Kumar, D.; Nisar, K.S.; Singh, J. Fractional modified Kawahara equation with Mittag-Leffler law. Chaos Solitons Fractals 2020, 131, 109508. [Google Scholar] [CrossRef]
- Ali, M.; Aziz, S.; Malik, S.A. Inverse problem for a multi-term fractional differential equation. Fract. Calc. Appl. Anal. 2020, 23, 799–821. [Google Scholar] [CrossRef]
- Stanek, S. The Neumann problem for the generalized Bagley-Torvik fractional differential equation. Fract. Calc. Appl. Anal. 2016, 19, 907–920. [Google Scholar] [CrossRef]
- Al-Musalhi, F.; Al-Salti, N.; Karimov, E. Initial boundary value problems for a fractional differential equation with hyper-Bessel operator. Fract. Calc. Appl. Anal. 2018, 21, 200–219. [Google Scholar] [CrossRef]
- Mongkolkeha, C.; Sintunavarat, W.; Kumam, P. Fixed point theorem for contraction mappings in modular spaces. Fixed Point Theory Appl. 2011, 2011, 93. [Google Scholar] [CrossRef]
- Chaipunya, P.; Cho, Y.J.; Kumam, P. Geraghty-type theorems in modular metric spaces with application to partial differential equation. Adv. Differ. Equ. 2012, 83, 1687–1847. [Google Scholar] [CrossRef]
- Goebel, K.; Kirk, W.A. Topics in Metric Fixed Point Theory; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Aydi, H.; Karapinar, E. A Meir-Keeler common type fixed point theorem on partial metric spaces. Fixed Point Theory Appl. 2012, 2012, 26. [Google Scholar] [CrossRef]
- Romero, C.; Ventura, S. Educational data mining: A review of the state of the art. IEEE Trans. Syst. Man. Cybern. Syst. 2010, 40, 601–618. [Google Scholar] [CrossRef]
- Jalota, C.; Agrawal, R. Analysis of educational data mining using classification. In Proceedings of the 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing, Faridabad, India, 14 February 2019; pp. 243–247. [Google Scholar]
- Agarwal, S.; Pandey, G.N.; Tiwari, M.D. Data mining in education: Data classification and decision tree approach. Int. J. E-Educ. E-Bus. E-Manag. E-Learn. 2012, 2, 140–144. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaslavski, A.J. Special Issue: Fixed-Point Theory and Its Applications, Dedicated to the Memory of Professor William Arthur Kirk. Symmetry 2024, 16, 1408. https://doi.org/10.3390/sym16111408
Zaslavski AJ. Special Issue: Fixed-Point Theory and Its Applications, Dedicated to the Memory of Professor William Arthur Kirk. Symmetry. 2024; 16(11):1408. https://doi.org/10.3390/sym16111408
Chicago/Turabian StyleZaslavski, Alexander J. 2024. "Special Issue: Fixed-Point Theory and Its Applications, Dedicated to the Memory of Professor William Arthur Kirk" Symmetry 16, no. 11: 1408. https://doi.org/10.3390/sym16111408
APA StyleZaslavski, A. J. (2024). Special Issue: Fixed-Point Theory and Its Applications, Dedicated to the Memory of Professor William Arthur Kirk. Symmetry, 16(11), 1408. https://doi.org/10.3390/sym16111408