Special Issue: Nonlinear Analysis and Its Applications in Symmetry II
Conflicts of Interest
References
- Awwal, A.M.; Ishaku, A.; Halilu, A.S.; Stanimirovic, P.S.; Pakkaranang, N.; Panyanak, B. Descent Derivative-Free Method Involving Symmetric Rank-One Update for Solving Convex Constrained Nonlinear Monotone Equations and Application to Image Recovery. Symmetry 2022, 14, 2375. [Google Scholar] [CrossRef]
- Stanimirovic, P.S.; Ivanov, B.; Stanujkic, D.; Katsikis, V.N.; Mourtas, S.D.; Kazakovtsev, L.A.; Edalatpanah, S.A. Improvement of Unconstrained Optimization Methods Based on Symmetry Involved in Neutrosophy. Symmetry 2023, 15, 250. [Google Scholar] [CrossRef]
- Andrusenko, O.; Gasinski, L.; Papageorgiou, N.S. Existence and Nonexistence of Positive Solutions for Perturbations of the Anisotropic Eigenvalue Problem. Symmetry 2023, 15, 495. [Google Scholar] [CrossRef]
- Reich, S.; Zaslavski, A.J. Three Convergence Results for Inexact Iterates of Uniformly Locally Nonexpansive Mappings. Symmetry 2023, 15, 1084. [Google Scholar] [CrossRef]
- Bachar, M.; Khamsi, M.A.; Méndez, O. Examining Nonlinear Fredholm Equations in Lebesgue Spaces with Variable Exponents. Symmetry 2023, 15, 2014. [Google Scholar] [CrossRef]
- Alharbi, A.; Noorwali, M.; Alsulami, H.H. Coupled Fixed Point Theory in Subordinate Semimetric Spaces. Symmetry 2024, 16, 499. [Google Scholar] [CrossRef]
- Li, Y.; Yang, S. Positive Radial Symmetric Solutions of Nonlinear Biharmonic Equations in an Annulus. Symmetry 2024, 16, 793. [Google Scholar] [CrossRef]
- Glizer, V.Y. Stability Analysis of Some Types of Singularly Perturbed Time-Delay Differential Systems: Symmetric Matrix Riccati Equation Approach. Symmetry 2024, 16, 838. [Google Scholar] [CrossRef]
- Bachar, M. The Variation of Constants Formula in Lebesgue Spaces with Variable Exponents. Symmetry 2024, 16, 978. [Google Scholar] [CrossRef]
- Anastassiou, G.A. Degree of Lp Approximation Using Activated Singular Integrals. Symmetry 2024, 16, 1022. [Google Scholar] [CrossRef]
- Al-Sawalha, M.M.; Agarwal, R.P.; Shah, R.; Ababneh, O.Y.; Weera, W. A reliable way to deal with fractional-order equations that describe the unsteady flow of a polytropic gas. Mathematics 2022, 10, 2293. [Google Scholar] [CrossRef]
- Al-Sawalha, M.M.; Khan, A.; Ababneh, O.; Botmart, T. Fractional view analysis of Kersten-Krasil’shchik coupled KdV-mKdV systems with non-singular kernel derivatives. AIMS Math. 2022, 7, 18334–18359. [Google Scholar] [CrossRef]
- Al-Sawalha, M.M.; Alshehry, A.S.; Nonlaopon, K.; Shah, R.; Ababneh, O.Y. Fractional view analysis of delay differential equations via numerical method. AIMS Math. 2022, 7, 20510–20523. [Google Scholar] [CrossRef]
- Petrovic, M.J.; Rakocevic, V.; Kontrec, N.; Panic, S.; Ilic, D. Hybridization of accelerated gradient descent method. Numer. Algorithms 2018, 79, 769–786. [Google Scholar] [CrossRef]
- Petrovic, M.J. An accelerated Double Step Size method in unconstrained optimization. Appl. Math. Comput. 2015, 250, 309–319. [Google Scholar]
- Ružicka, M. Electrorheological Fluids: Modeling and Mathematical Theory; Springer-Verlag: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Cruz-Uribe, D.V.; Fiorenza, A. Variable Lebesgue Spaces; Birkhäuser/Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Diening, L.; Harjulehto, P.; Hästö, P.; Ruzicka, M. Lebesgue and Sobolev Spaces with Variable Exponents; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Butnariu, D.; Davidi, R.; Herman, G.T.; Kazantsev, I.G. Stable convergence behavior under summable perturbations of a class of projection methods for convex feasibility and optimization problems. IEEE J. Sel. Top. Signal Process. 2007, 1, 540–547. [Google Scholar] [CrossRef]
- Censor, Y.; Davidi, R.; Herman, G.T. Perturbation resilience and superiorization of iterative algorithms. Inverse Probl. 2010, 26, 12. [Google Scholar] [CrossRef]
- Gibali, A. A new split inverse problem and an application to least intensity feasible solutions. Pure Appl. Funct. Anal. 2017, 2, 243–258. [Google Scholar]
- Nikazad, T.; Davidi, R.; Herman, G.T. Accelerated Perturbation-Resilient Block-Iterative Projection Methods with Application to Image Reconstruction. Inverse Probl. 2012, 28, 035005. [Google Scholar] [CrossRef]
- Ostrowski, A.M. The Round-Off Stability of Iterations. Z. Angew. Math. Mech. 1967, 47, 77–81. [Google Scholar] [CrossRef]
- Musielak, J. Orlicz Spaces and Modular Spaces; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1983; Volume 1034. [Google Scholar]
- Harjulehto, P.; Hästö, P. Orlicz Spaces and Generalized Orlicz Spaces; Lecture Notes in Mathematics; Springer: Cham, Switzerland, 2019; Volume 2236. [Google Scholar]
- Musielak, J.; Orlicz, W. On modular spaces. Stud. Math. 1959, 18, 49–65. [Google Scholar] [CrossRef]
- Berinde, V. Generalized coupled fixed point theorems for mixed monotone mappings in partially ordered metric spaces. Nonlinear Anal. 2011, 74, 7347–7355. [Google Scholar] [CrossRef]
- Senapati, T.; Dey, L.K. A new approach of couple fixed point results on JS-metric spaces. Fixed Point Theory 2019, 1, 323–336. [Google Scholar] [CrossRef]
- Bota, T.F.; Petrusel, A.; Petrusel, G.; Samet, B. Coupled fixed point theorems for single-valued operators in b-metric spaces. Fixed Point Theory Appl. 2015, 2015, 231. [Google Scholar] [CrossRef]
- McKenna, P.J.; Walter, W. Traveling waves in a suspension bridge. SIAM J. Appl. Math. 1990, 50, 703–715. [Google Scholar] [CrossRef]
- Chen, Y.; McKenna, P.J. Traveling waves in a nonlinear suspension beam: Theoretical results and numerical observations. J. Differ. Equ. 1997, 135, 325–355. [Google Scholar] [CrossRef]
- Gazzola, F.; Grunau, H.; Sweers, G. Polyharmonic Boundary Value Problems; Lectures Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2010; Volume 1991. [Google Scholar]
- Gupta, C.P.; Kwong, Y.C. Biharmonic eigenvalue problems and Lp estimates. Int. J. Math. Sci. 1990, 13, 469–480. [Google Scholar] [CrossRef]
- Dalmasso, R. Uniqueness theorems for some fourth order elliptic equations. Proc. Am. Math. Soc. 1995, 123, 1177–1183. [Google Scholar] [CrossRef]
- Gazzola, F.; Grunau, H.C.; Squassina, M. Existence and nonexistence results for critical growth biharmonic elliptic equations. Calc. Var. 2003, 18, 117–143. [Google Scholar] [CrossRef]
- Abid, I.; Baraket, S. Construction of singular solutions for elliptic problem of fourth order derivative with a subcritical nonlinearity. Differ. Integr. Equ. 2008, 21, 653–664. [Google Scholar]
- Guo, Z.; Lai, B.; Ye, D. Revisiting the biharmonic equation modelling Electrostatic actuation in low Dimensions. Proc. Am. Math. Soc. 2014, 142, 2027–2034. [Google Scholar] [CrossRef]
- Alves, C.O.; Nobrega, A.B. Nodal ground state solution to a biharmonic equation via dual method. J. Differ. Equ. 2016, 260, 5174–5201. [Google Scholar] [CrossRef]
- Feng, M. Positive solutions for biharmonic equations: Existence, uniqueness and multiplicity. Mediterr. J. Math. 2023, 20, 309. [Google Scholar] [CrossRef]
- Feng, M.; Chen, H. Positive solutions for a class of biharmonic equations: Existence and uniqueness. Appl. Math. Lett. 2023, 143, 108687. [Google Scholar] [CrossRef]
- Kolmanovskii, V.; Myshkis, A. Introduction to the Theory and Applications of Functional Differential Equations; Springer: Dordrecht, The Netherlands, 1999. [Google Scholar]
- Mahmoud, M.S. Recent progress in stability and stabilization of systems with time-delays. Math. Probl. Eng. 2017, 2017, 7354654. [Google Scholar] [CrossRef]
- Sipahi, R.; Niculescu, S.-I.; Abdallah, C.T.; Gu, K. Stability and stabilization of systems with time delay. IEEE Control Syst. Mag. 2011, 31, 38–65. [Google Scholar]
- Chang, K.W. Singular perturbations of a general boundary value problem. SIAM J. Math. Anal. 1972, 3, 520–526. [Google Scholar] [CrossRef]
- Fridman, E. Decoupling transformation of singularly perturbed systems with small delays. Z. Angew. Math. Mech. 1996, 82, 201–204. [Google Scholar]
- Pazy, A. Semigroups of linear operators and applications to partial differential equations. In Applied Mathematical Sciences; Springer: New York, NY, USA, 1983; Volume 44, viii+279p. [Google Scholar]
- Engel, K.J.; Nagel, R. One-parameter semigroups for linear evolution equations. In Graduate Texts in Mathematics; Springer: New York, NY, USA, 2000; Volume 194, xxii+586p. [Google Scholar]
- Carrasco, A.; Leiva, H. Variation of constants formula for functional parabolic partial differential equations. Electron. J. Differ. Equ. 2007, 2007, 1–20. [Google Scholar]
- Gal, S.G. Remark on the degree of approximation of continuous functions by singular integrals. Math. Nachrichten 1993, 164, 197–199. [Google Scholar] [CrossRef]
- Gal, S.G. Degree of approximation of continuous functions by some singular integrals. Rev. Anal. Numér. Théor. Approx. 1998, 27, 251–261. [Google Scholar]
- Mohapatra, R.N.; Rodriguez, R.S. On the rate of convergence of singular integrals for Hölder continuous functions. Math. Nachrichten 1990, 149, 117–124. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaslavski, A.J. Special Issue: Nonlinear Analysis and Its Applications in Symmetry II. Symmetry 2024, 16, 1409. https://doi.org/10.3390/sym16111409
Zaslavski AJ. Special Issue: Nonlinear Analysis and Its Applications in Symmetry II. Symmetry. 2024; 16(11):1409. https://doi.org/10.3390/sym16111409
Chicago/Turabian StyleZaslavski, Alexander J. 2024. "Special Issue: Nonlinear Analysis and Its Applications in Symmetry II" Symmetry 16, no. 11: 1409. https://doi.org/10.3390/sym16111409
APA StyleZaslavski, A. J. (2024). Special Issue: Nonlinear Analysis and Its Applications in Symmetry II. Symmetry, 16(11), 1409. https://doi.org/10.3390/sym16111409