Some Properties of Reduced Biquaternion Tensors
Abstract
:1. Introduction
Algorithm 1. Computing eigenvalues of reduced biquaternion tensors. |
Input: Given a reduced biquaternion tensor . |
Output: Eigenvalues and the corresponding eigentensors .
|
2. Notations and Preliminaries
- (i)
- The map f is a bijection. That is, there exists a bijective inverse map :
- (ii)
- The map f satisfies , where · refers to the usual matrix multiplication.
3. Real and Complex Representations for Reduced Biquaternion Tensors
4. The Eigenvalues and Corresponding Eigentensors of Reduced Biquaternion Tensors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hamilton, W.R. On a new species of imaginary quantities, connected with the theory of quaternions. Proc. R. Ir. Acad. (1836–1869) 1840, 2, 424–434. [Google Scholar]
- Vince, J. Quaternions for Computer Graphics; Springer: New York, NY, USA, 2011. [Google Scholar]
- Vince, J. Quaternion Algebras; Springer Nature: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Jia, Z.G.; Liu, X.; Zhao, M.Y. The implicitly restarted multi-symplectic block-lanczos method for large-scale hermitian quaternion matrix eigenvalue problem and applications. J. Comput. Appl. Math. 2023, 419, 114664. [Google Scholar] [CrossRef]
- Jia, Z.G.; Wei, M.S.; Ling, S.T. A new structure-preserving method for quaternion hermitian eigenvalue problems. J. Comput. Appl. Math. 2013, 239, 12–24. [Google Scholar] [CrossRef]
- Ma, R.R.; Jia, Z.G.; Bai, Z.J. A structure-preserving Jacobi algorithm for quaternion Hermitian eigenvalue problems. Comput. Math. Appl. 2018, 75, 809–820. [Google Scholar] [CrossRef]
- Wang, Q.W.; Wang, X.X. Arnoldi method for large quaternion right eigenvalue problem. J. Sci. Comput. 2020, 82, 58. [Google Scholar] [CrossRef]
- He, Z.H. Some new results on a system of Sylvester-type quaternion matrix equations. Linear Multilinear Algebra 2021, 69, 3069–3091. [Google Scholar] [CrossRef]
- He, Z.H.; Wang, M. Solvability conditions and general solutions to some quaternion matrix equations. Math. Methods Appl. Sci. 2021, 44, 14274–14291. [Google Scholar] [CrossRef]
- He, Z.H.; Qin, W.L.; Tian, J.; Wang, X.X.; Zhang, Y. A new sylvester-type quaternion matrix equation model for color image data transmission. Comput. Appl. Math. 2024, 43, 227. [Google Scholar] [CrossRef]
- He, Z.H.; Tian, J.; Yu, S.W. A system of four generalized sylvester matrix equations over the quaternion algebra. Mathematics 2024, 12, 2341. [Google Scholar] [CrossRef]
- Xu, X.L.; Wang, Q.W. The consistency and the general common solution to some quaternion matrix equations. Ann. Funct. Anal. 2023, 14, 53. [Google Scholar] [CrossRef]
- Xie, M.Y.; Wang, Q.W.; He, Z.H.; Saad, M.M. A system of Sylvester-type quaternion matrix equations with ten variables. Acta Math. Sin. 2022, 38, 1399–1420. [Google Scholar] [CrossRef]
- Chen, J.R.; Ng, M.K. Color image inpainting via robust pure quaternion matrix completion: Error bound and weighted loss. SIAM J. Imaging Sci. 2022, 15, 1469–1498. [Google Scholar] [CrossRef]
- Jia, Z.G.; Ng, M.K.; Song, G.K. Robust quaternion matrix completion with applications to image inpainting. Numer. Linear Algebra Appl. 2019, 26, e2245. [Google Scholar] [CrossRef]
- Ke, Y.F.; Ma, C.F.; Jia, Z.G.; Xie, Y.J.; Liao, R.W. Quasi non-negative quaternion matrix factorization with application to color face recognition. J. Sci. Comput. 2023, 95, 38. [Google Scholar] [CrossRef]
- Pan, J.J.; Ng, M.K. Separable quaternion matrix factorization for polarization images. SIAM J. Imaging Sci. 2023, 16, 1281–1307. [Google Scholar] [CrossRef]
- Segre, C. The real representations of complex elements and extension to bicomplex systems. Math. Ann. 1892, 40, 413–467. [Google Scholar] [CrossRef]
- Gai, S.; Wan, M.H.; Wang, L.; Yang, C.H. Reduced quaternion matrix for color texture classification. Neural Comput. Appl. 2014, 25, 945–954. [Google Scholar] [CrossRef]
- Isokawa, T.; Nishimura, H.; Matsui, N. Commutative quaternion and multistate hopfield neural networks. In Proceedings of the 2010 International Joint Conference on Neural Networks (IJCNN), Barcelona, Spain, 18–23 July 2010; pp. 1–6. [Google Scholar]
- Kobayashi, M. Twin-multistate commutative quaternion hopfield neural networks. Neurocomputing 2018, 320, 150–156. [Google Scholar] [CrossRef]
- Pei, S.C.; Chang, J.H.; Ding, J.J. Commutative reduced biquaternions and their Fourier transform for signal and image processing applications. IEEE Trans. Signal Process. 2004, 52, 2012–2031. [Google Scholar] [CrossRef]
- Pei, S.C.; Chang, J.H.; Ding, J.J.; Chen, M.Y. Eigenvalues and singular value decompositions of reduced biquaternion matrices. IEEE Trans. Circuits Syst. I Regul. Pap. 2008, 55, 2673–2685. [Google Scholar]
- Ding, W.; Li, Y.; Wei, A.L.; Liu, Z.H. Solving reduced biquaternion matrices equation AiXBi = C with special structure based on semi-tensor product of matrices. AIMS Math. 2022, 7, 3258–3276. [Google Scholar] [CrossRef]
- Cao, W.S.; Tang, Z. Algebraic properties of reduced biquaternions. J. Math. Res. Appl. 2021, 41, 441–453. [Google Scholar]
- Guo, Z.W.; Jiang, T.S.; Wang, G.; Vasil’ev, V.I. Algebraic algorithms for eigen-problems of a reduced biquaternion matrix and applications. Appl. Math. Comput. 2024, 463, 128358. [Google Scholar] [CrossRef]
- Kösal, H.H.; Tosun, M. Commutative quaternion matrices. Adv. Appl. Clifford Algebr. 2014, 24, 769–779. [Google Scholar] [CrossRef]
- Kösal, H.H.; Tosun, M. Some equivalence relations and results over the commutative quaternions and their matrices. An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 2017, 25, 125–142. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, X.; Zhang, Y. Least-squares solutions of the generalized reduced biquaternion matrix equations. Filomat 2023, 37, 863–870. [Google Scholar] [CrossRef]
- Zhang, D.; Jiang, T.S.; Wang, G.; Vasil’ev, V.I. Two novel numerical methods for the diagonalisation of a reduced biquaternion matrix in the reduced biquaternionic algebra. Linear Multilinear Algebra 2024, 72, 139–152. [Google Scholar] [CrossRef]
- Catoni, F.; Cannata, R.; Zampetti, P. An introduction to commutative quaternions. Adv. Appl. Clifford Algebr. 2006, 16, 1–28. [Google Scholar] [CrossRef]
- Omberg, L.G. Tensor Generalizations of the Singular Value Decomposition for Integrative Analysis of Large-Scale Molecular Biological Data. Dissertations & Theses Gradworks, The University of Texas at Austin, Austin, TX, USA, 2007. [Google Scholar]
- Preethi, S.; Schomay, T.E.; Aiello, K.A.; Orly, A.; Hoheisel, J.D. Tensor gsvd of patient- and platform-matched tumor and normal dna copy-number profiles uncovers chromosome arm-wide patterns of tumor-exclusive platform-consistent alterations encoding for cell transformation and predicting ovarian cancer survival. PLoS ONE 2015, 10, e0121396. [Google Scholar]
- He, Z.H.; Ng, M.K.; Zeng, C. Generalized singular value decompositions for tensors and their applications. Numer. Math. Theory Methods Appl. 2021, 14, 692–713. [Google Scholar] [CrossRef]
- Ng, M.K.; Wang, X.Z. Parallel active subspace decomposition for tensor robust principal component analysis. Commun. Appl. Math. Comput. 2021, 3, 221–241. [Google Scholar] [CrossRef]
- Yu, Q.; Zhang, X.Z.; Chen, Y.N.; Qi, L.Q. Low Tucker rank tensor completion using a symmetric block coordinate descent method. Numer. Linear Algebra Appl. 2023, 30, e2464. [Google Scholar] [CrossRef]
- Kolda, T.G.; Bader, B.W. Tensor decomposition and applications. SIAM Rev. 2009, 51, 455–500. [Google Scholar] [CrossRef]
- Qi, L.Q.; Chen, Y.N.; Bakshi, M.; Zhang, X.Z. Triple decomposition and tensor recovery of third order tensors. SIAM J. Matrix Anal. Appl. 2021, 42, 299–329. [Google Scholar] [CrossRef]
- Song, G.J.; Ng, M.K.; Zhang, X.J. Tensor completion by multi-rank via unitary transformation. Appl. Comput. Harmon. Anal. 2023, 65, 348–373. [Google Scholar] [CrossRef]
- Wang, Y.C.; Wei, Y.M. Generalized eigenvalue for even order tensors via Einstein product and its applications in multilinear control systems. Comput. Appl. Math. 2022, 41, 419. [Google Scholar] [CrossRef]
- Zhang, X.F.; Li, T.; Ou, Y.G. Iterative solutions of generalized Sylvester quaternion tensor equations. Linear Multilinear Algebra 2024, 72, 1259–1278. [Google Scholar] [CrossRef]
- Qi, L.Q. Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 2005, 40, 1302–1324. [Google Scholar] [CrossRef]
- He, Z.H.; Wang, X.X.; Zhao, Y.F. Eigenvalues of quaternion tensors with applications to color video processing. J. Sci. Comput. 2023, 94, 1. [Google Scholar] [CrossRef]
- Einstein, A. The foundations of general relativity theory—Sciencedirect. Gen. Theory Relativ. 1973, 88, 140–172. [Google Scholar]
- Zhang, F.Z. Geršgorin type theorems for quaternionic matrices. Linear Algebra Appl. 2007, 424, 139–153. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.-T.; Yu, S.-W. Some Properties of Reduced Biquaternion Tensors. Symmetry 2024, 16, 1260. https://doi.org/10.3390/sym16101260
Liu T-T, Yu S-W. Some Properties of Reduced Biquaternion Tensors. Symmetry. 2024; 16(10):1260. https://doi.org/10.3390/sym16101260
Chicago/Turabian StyleLiu, Ting-Ting, and Shao-Wen Yu. 2024. "Some Properties of Reduced Biquaternion Tensors" Symmetry 16, no. 10: 1260. https://doi.org/10.3390/sym16101260
APA StyleLiu, T.-T., & Yu, S.-W. (2024). Some Properties of Reduced Biquaternion Tensors. Symmetry, 16(10), 1260. https://doi.org/10.3390/sym16101260