Geometry of Warped Product Hemi-Slant Submanifolds of an S-Manifold
Abstract
:1. Introduction
2. Basic Concepts
3. Slant and Hemi-Slant Submanifold
4. Warped Product Hemi-Slant Submanifold
- (i)
- ,
- (ii)
- ,
- (iii)
- ,
- (i)
- ;
- (ii)
- ;
- (iii)
- ;
- (i)
- (ii)
- (iii)
5. Inequality for Warped Product Hemi-Slant Submanifold
- (i)
- The squared norm of the second fundamental form of M satisfies
- (ii)
- If the equality sign in (26) holds identically, then is totally geodesic and is totally umbilical submanifolds in .
- (i)
- The squared norm of the second fundamental form of M satisfies
- (ii)
- If the equality sign in (32) holds identically, then is totally geodesic in , and is totally umbilical submanifold of .
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yano, K. On a structure defined by a tensor field f of type (1,1) satisfying f3 + f = 0. Tensor 1963, 14, 99–109. [Google Scholar]
- Oldberg, S.I.G.; Yano, K. Globally framed f-manifold III. J. Math. 1971, 15, 456–474. [Google Scholar]
- Blair, D.E. Geometry of manifolds with structural group U(n) × O(s). J. Differ. Geom. 1970, 4, 155–167. [Google Scholar] [CrossRef]
- Blair, D.E. On a generalization of the Hopf fibration. Ann. Stiint. Univ. Al. I Cuza Iasi 1971, 17, 171–177. [Google Scholar]
- Blair, D.E.; Ludden, G.D.; Yano, K. Differential geometric structures on principal toroidal bundles. Trans. Amer. Math. Soc. 1973, 181, 175–184. [Google Scholar] [CrossRef]
- Hasegawa, I.; Okuyama, Y.; Abe, T. On p-th Sasakian manifolds. J. Hokkaido Univ. Ed. Sect. II A 1986, 37, 116. [Google Scholar]
- Brunetti, L.; Pastore, A.M. S-Manifolds Versus Indefinite S-Manifolds and Local Decomposition Theorems. Int. Electron. J. Geom. 2016, 9, 1–8. [Google Scholar] [CrossRef]
- Cabrerizo, J.L.; Fernandez, L.M.; Fernandez, M. A classification of certain submanifolds of an S-manifold. Ann. Pol. Math. 1991, 54, 117–123. [Google Scholar] [CrossRef]
- Cabrerizo, J.L.; Fernandez, L.M.; Fernandez, M. A classification of totally f-umbilical submanifolds of an S-manifold. Soochow J. Math. 1992, 18, 211–221. [Google Scholar]
- Tripathi, M.M. Submanifolds of framed metric manifolds and S-manifolds. Note Mat. 2001, 20, 135–164. [Google Scholar]
- Chen, B.Y. Slant immersions. Bull. Aust. Math. Soc. 1990, 41, 135–147. [Google Scholar] [CrossRef]
- Chen, B.Y. Geometry of Slant Submanifolds; Katholieke Universiteit Leuven: Leuven, Belgium, 1990. [Google Scholar]
- Lotta, A. Slant submanifolds in contact geometry. Bull. Math. Soc. Roum. 1996, 39, 183–198. [Google Scholar]
- Cabrerizo, J.L.; Carriazo, A.; Fernandez, L.M.; Fernandez, M. Slant submanifolds in Sasakian manifolds. Glasg. Math. J. 2000, 42, 125–138. [Google Scholar] [CrossRef]
- Papaghiuc, N. Semi-slant submanifolds of Kaehlerian manifolds. An. Stiint. Univ. Al. I. Cuza Iasi. 1994, 9, 55–61. [Google Scholar]
- Cabrerizo, J.L.; Carriazo, A.; Fernandez, L.M.; Fernandez, M. Semi-slant submanifolds of a Sasakian manifold. Geom. Dedicata 1999, 78, 183–199. [Google Scholar] [CrossRef]
- Carriazo, A. New Developments in Slant Submanifolds Theory; Narosa Publishing House: New Delhi, India, 2002. [Google Scholar]
- Sahin, B. Warped product submanifolds of Kaehler manifolds with a slant factor. Ann. Pol. Math. 2009, 95, 207–226. [Google Scholar] [CrossRef]
- Al-Solamy, F.R.; Khan, M.A.; Uddin, S. Totally umbilical hemi-slant submanifolds of Kahler manifolds. Abstr. Appl. Anal. 2011, 2011, 987157. [Google Scholar] [CrossRef]
- Taştan, H.M.; Gerdan, C. Hemi-Slant Submanifolds of a Locally Conformal Kahler Manifold. Int. Electron. J. Geom. 2015, 8, 46–53. [Google Scholar] [CrossRef]
- Uddin, S.; Khan, M.A.; Singh, K. A note on totally umbilical pseudo-slant submanifolds of a nearly Kahler manifold. Acta Univ. Apulensis Math. Inform. 2012, 29, 279–285. [Google Scholar]
- Bishop, R.L.; O’Neill, B. Manifolds of Negative curvature. Trans. Am. Math. Soc. 1969, 145, 1–49. [Google Scholar] [CrossRef]
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge University Press: London, UK; New York, NY, USA, 1973. [Google Scholar]
- Chen, B.Y. Geometry of warped product CR-submanifolds in Kaehler manifolds. Monatsh. Math. 2001, 133, 177–195. [Google Scholar] [CrossRef]
- Chen, B.Y. Geometry of warped product CR-submanifolds in Kaehler manifolds, II. Monatsh. Math. 2001, 134, 103–119. [Google Scholar] [CrossRef]
- Chen, B.Y. Pseudo-Riemannian Geometry, 8-Invariants and Applications; World Scientific: Hackensack, NJ, USA, 2011. [Google Scholar]
- Chen, B.Y. Geometry of warped product submanifolds: A survey. J. Adv. Math. Stud. 2013, 6, 1–43. [Google Scholar]
- Hasegawa, I.; Mihai, I. Contact CR-warped product submanifolds in Sasakian manifolds. Geom. Dedicata 2003, 102, 143–150. [Google Scholar] [CrossRef]
- Mihai, A. Warped product submanifolds in complex space forms. Acta Sci. Math. 2004, 70, 419–427. [Google Scholar]
- Munteanu, M.I. Warped product contact CR-submanifolds of Sasakian space forms. Publ. Math. Debr. 2005, 66, 75–120. [Google Scholar] [CrossRef]
- Mustafa, A.; Özel, C. Existence of Warped Product Submanifolds of Almost Hermitian Manifolds. Int. Electron. J. Geom. 2021, 14, 361–370. [Google Scholar]
- Uddin, S.; Mustafa, A.; Wong, B.R.; Ozel, C. A geometric inequality for warped product semi-slant submanifolds of nearly cosymplectic manifolds. Rev. Dela Union Math. Argent. 2014, 55, 55–69. [Google Scholar]
- Al-Solamy, F.R.; Khan, V.A. Warped product semi-slant submanifolds of a Sasakian manifold. Serdica Math. J. 2008, 34, 597–606. [Google Scholar]
- Sahin, B. Non existence of warped product semi-slant submanifolds of Kaehler manifolds. Geom. Dedicata 2006, 117, 195–202. [Google Scholar] [CrossRef]
- Uddin, S.; Al-Solamy, F.R. Warped product pseudo-slant submanifolds of cosymplectic manifolds. Analele Stiintifice Univ. Al I Cuza Iasi-Mat. 2016, 3, 901–913. [Google Scholar] [CrossRef]
- Uddin, S.; Al-Solamy, F.R. Warped product pseudo-slant immersions in Sasakian manifolds. Publ. Math. 2017, 91, 331–348. [Google Scholar] [CrossRef]
- Alghefari, R.; Altharwi, S. Warped Product Submanifolds of an S-manifold. Int. Math. Forum 2014, 9, 935–946. [Google Scholar] [CrossRef]
- Carriazo, A.; Fernandez, L.M.; Hans-Uber, M.B. Some slant submanifolds of S-manifolds. Acta Math. Hungar. 2005, 107, 267–285. [Google Scholar] [CrossRef]
- Hiepko, S. Eine inner kennzeichungder verzerrten produkte. Math. Ann. 1979, 241, 209–215. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Mutairi, A.; Al-Ghefari, R.; Al-Jedani, A. Geometry of Warped Product Hemi-Slant Submanifolds of an S-Manifold. Symmetry 2024, 16, 35. https://doi.org/10.3390/sym16010035
Al-Mutairi A, Al-Ghefari R, Al-Jedani A. Geometry of Warped Product Hemi-Slant Submanifolds of an S-Manifold. Symmetry. 2024; 16(1):35. https://doi.org/10.3390/sym16010035
Chicago/Turabian StyleAl-Mutairi, Ahlam, Reem Al-Ghefari, and Awatif Al-Jedani. 2024. "Geometry of Warped Product Hemi-Slant Submanifolds of an S-Manifold" Symmetry 16, no. 1: 35. https://doi.org/10.3390/sym16010035
APA StyleAl-Mutairi, A., Al-Ghefari, R., & Al-Jedani, A. (2024). Geometry of Warped Product Hemi-Slant Submanifolds of an S-Manifold. Symmetry, 16(1), 35. https://doi.org/10.3390/sym16010035