Gravitational Light Bending in Weyl Gravity and Schwarzschild–de Sitter Spacetime
Abstract
1. Introduction
2. The Action of Weyl Gravity
3. Bending of Light in the SdS and MK Spacetimes
3.1. SdS Spacetime
3.2. MK Spacetime
4. Discussion
Funding
Conflicts of Interest
References
- Islam, J.N. The cosmological constant and classical tests of general relativity. Phys. Lett. A 1983, 97, 239. [Google Scholar] [CrossRef]
- Finelli, F.; Galaverni, M.; Gruppuso, A. Light bending as a probe of the nature of dark energy. Phys. Rev. D 2007, 75, 43003. [Google Scholar] [CrossRef]
- Rindler, W.; Ishak, M. Contribution of the cosmological constant to the relativistic bending of light revisited. Phys. Rev. D 2007, 76, 43006. [Google Scholar] [CrossRef]
- Ishak, M.; Rindler, W.; Dossett, J.; Moldenhauer, J.; Allison, C. A new independent limit on the cosmological constant/dark energy from the relativistic bending of light by Galaxies and clusters of Galaxies. Mon. Not. R. Astron. Soc. 2008, 388, 1279. [Google Scholar]
- Weinberg, S. Gravitation and Cosmology: Principles and Applications to the General Theory of Relativity; John Wiley & Sons: Hoboken, NJ, USA, 1972. [Google Scholar]
- Sereno, M. Influence of the cosmological constant on gravitational lensing in small systems. Phys. Rev. D 2008, 77, 43004. [Google Scholar] [CrossRef]
- Sereno, M. Role of Λ in the Cosmological Lens Equation. Phys. Rev. Lett. 2009, 102, 21301. [Google Scholar] [CrossRef] [PubMed]
- Bhadra, A.; Biswas, S.; Sarkar, K. Gravitational deflection of light in the Schwarzschild -de Sitter space time. Phys. Rev. D 2010, 82, 63003. [Google Scholar] [CrossRef]
- Schucker, T. Cosmological constant and lensing. Gen. Relativ. Grav. 2009, 41, 67. [Google Scholar] [CrossRef]
- Schucker, T. Strong lensing in the Einstein–Straus solution. Gen. Relativ. Grav. 2009, 41, 1595. [Google Scholar] [CrossRef]
- Khriplovich, I.B.; Pomeransky, A.A. Does Cosmological Term Influence Gravitational Lensing? Int. J. Mod. Phys. D 2008, 17, 2255. [Google Scholar] [CrossRef]
- Park, M. Rigorous approach to gravitational lensing. Phys. Rev. D 2008, 78, 23014. [Google Scholar] [CrossRef]
- Simpson, E.; Peacock, J.; Heavens, A. On lensing by a cosmological constant. Mon. Not. R. Astron. Soc. 2010, 402, 2009. [Google Scholar] [CrossRef]
- Butcher, L.M. Lambda does not lens: Deflection of light in the Schwarzschild-de Sitter spacetime. Phys. Rev. D 2016, 94, 83011. [Google Scholar] [CrossRef]
- Hu, L.; Heavens, A.; Bacon, D. Light bending by the cosmological constant. J. Cosmol. Astropart. Phys. (JCAP) 2022, 2, 09. [Google Scholar] [CrossRef]
- Riegert, R.J. Birkhoff’s Theorem in conformal gravity. Phys. Rev. Lett. 1984, 53, 315. [Google Scholar] [CrossRef]
- Mannheim, P.D.; Kazanas, D. Exact vacuum solution to conformal Weyl gravity and galactic rotation curves. Astrophys. J. 1989, 342, 635. [Google Scholar] [CrossRef]
- Mannheim, P.D.; Kazanas, D. General structure of the gravitational equations of motion in conformal Weyl gravity. Astrophys. J. Suppl. Ser. 1991, 76, 431. [Google Scholar]
- Mannheim, P.D. Linear potentials and galactic rotation curves. Astrophys. J. 1993, 419, 150. [Google Scholar] [CrossRef]
- Mannheim, P.D. Are galactic rotation curves really flat? Astrophys. J. 1997, 479, 659. [Google Scholar] [CrossRef]
- Mannheim, P.D.; O’Brien, J.G. Impact of a global quadratic potential on galactic rotation curves. Phys. Rev. Lett. 2011, 106, 121101. [Google Scholar] [CrossRef]
- Mannheim, P.D.; O’Brien, J.G. Fitting galactic rotation curves with conformal gravity and a global quadratic potential. Phys. Rev. D 2012, 85, 124020. [Google Scholar] [CrossRef]
- O’Brien, J.G.; Chiarelli, T.L.; Dentico, J.; Stulge, M.; Stefanski, B.; Moss, R.; Chaykov, S. Alternative gravity rotation curves for the LITTLE THINGS survey. Astrophys. J. 2018, 852, 6. [Google Scholar] [CrossRef]
- Hobson, M.P.; Lasenby, A.N. Conformal gravity does not predict flat galaxy rotation curves. Phys. Rev. D 2021, 104, 64014. [Google Scholar] [CrossRef]
- Edery, A.; Paranjape, M.B. Classical tests for Weyl gravity: Deflection of light and time delay. Phys. Rev. D 1998, 58, 24011. [Google Scholar] [CrossRef]
- Pireaux, S. Light deflection in Weyl gravity: Critical distances for photon paths. Class. Quantum Grav. 2004, 21, 1897. [Google Scholar] [CrossRef]
- Pireaux, S. Light deflection in Weyl gravity: Constraints on the linear parameter. Class. Quantum Grav. 2004, 21, 4317. [Google Scholar] [CrossRef]
- Sultana, J.; Kazanas, D. Bending of light in conformal Weyl gravity. Phys. Rev. D 2010, 81, 127502. [Google Scholar] [CrossRef]
- Sultana, J.; Kazanas, D. Deflection of light to second order in conformal Weyl gravity. J. Cosmol. Astropart. Phys. (JCAP) 2013, 4, 48. [Google Scholar] [CrossRef]
- Villanueva, J.R.; Olivares, M. On the null trajectories in conformal Weyl gravity. J. Cosmol. Astropart. Phys. (JCAP) 2013, 6, 40. [Google Scholar] [CrossRef]
- Cattani, C.; Scalia, M.; Laserra, E.; Bochicchio, I.; Nandi, K.K. Correct light deflection in Weyl conformal gravity. Phys. Rev. D 2013, 87, 47503. [Google Scholar] [CrossRef]
- Lim, Y.-K.; Wang, Q.-H. Exact gravitational lensing in conformal gravity and Schwarzschild–de Sitter spacetime. Phys. Rev. D 2017, 95, 24004. [Google Scholar] [CrossRef]
- Campigotto, M.C.; Diaferio, A.; Fatibene, L. Conformal gravity: Light deflection revisited and the galactic rotation curve failure. Class. Quantum Grav. 2019, 36, 245014. [Google Scholar] [CrossRef]
- Kaşikçi, O.; Deliduman, C. Gravitational lensing in Weyl gravity. Phys. Rev. D 2019, 100, 24019. [Google Scholar] [CrossRef]
- Turner, G.E.; Horne, K. Null geodesics in conformal gravity. Class. Quantum Grav. 2020, 37, 95012. [Google Scholar] [CrossRef]
- Huang, Y.; Cao, Z. Generalized Gibbons-Werner method for deflection angle. Phys. Rev. D 2022, 106, 104043. [Google Scholar] [CrossRef]
- Gibbons, G.W.; Werner, M.C. Applications of the Gauss-Bonnet theorem to gravitational lensing. Class. Quantum Grav. 2008, 25, 235009. [Google Scholar] [CrossRef]
- Ishihara, A.; Suzuki, Y.; Ono, T.; Kitamura, T.; Asada, H. Gravitational bending angle of light for finite distance and the Gauss-Bonnet theorem. Phys. Rev. D 2010, 94, 84015. [Google Scholar] [CrossRef]
- Toshiaki, O.; Hideki, A. The Effects of finite distance on the gravitational deflection angle of light. Universe 2019, 5, 218. [Google Scholar]
- Takizawa, K.; Ono, T.; Asada, H. Gravitational deflection angle of light: Definition by an observer and its application to an asymptotically nonflat spacetime. Phys. Rev. D 2020, 101, 104032. [Google Scholar] [CrossRef]
- Takizawa, K.; Ono, T.; Asada, H. Gravitational lens without asymptotic flatness: Its application to Weyl gravity. Phys. Rev. D 2020, 102, 64060. [Google Scholar]
- Mannheim, P.D.; Kazanas, D. Solutions to the Reissner-Nordström, Kerr, and Kerr-Newman problems in fourth-order conformal Weyl gravity. Phys. Rev. D 1991, 44, 417. [Google Scholar] [CrossRef] [PubMed]
- Mannheim, P.D. Conformal cosmology with no cosmological constant. Gen. Relativ. Gravit. 1990, 22, 289. [Google Scholar] [CrossRef]
- Mannheim, P.D. Conformal Gravity and the flatness problem. Astrophys. J. 1992, 391, 429. [Google Scholar] [CrossRef]
- Mannheim, P.D.; Kazanas, D. Newtonian limit of conformal gravity and the lack of necessity of the second order Poisson equation. Gen. Relativ. Gravit. 1994, 26, 337. [Google Scholar] [CrossRef]
- Said, J.L.; Sultana, J.; Zarb Adami, K. Exact static cylindrical solution to conformal Weyl gravity. Phys. Rev. D 2012, 85, 104054. [Google Scholar] [CrossRef]
- Said, J.L.; Sultana, J.; Zarb Adami, K. Charged cylindrical black holes in conformal gravity. Phys. Rev. D 2012, 86, 104009. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Relativistic gravitation theory for the modified Newtonian dynamics paradigm. Phys. Rev. D 2014, 70, 83509. [Google Scholar] [CrossRef]
- Sultana, J.; Kazanas, D.; Said, J.L. Conformal Weyl gravity and perihelion precession. Phys. Rev. D 2012, 86, 84008. [Google Scholar] [CrossRef]
- Rindler, W. Relativity: Special, General, and Cosmological, 2nd ed.; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Wald, R.M. General Relativity; The University of Chicago Press: Chigago, IL, USA, 1984. [Google Scholar]
- Do Carmo, M.P. Differential Geometry of Curves and Surfaces; Prentice-Hall: Upper Saddle River, NJ, USA, 1976. [Google Scholar]
- Edery, A.; Méthot, A.A.; Paranjape, M.B. Gauge choice and geodetic deflection in conformal gravity. Gen. Relativ. Grav. 2001, 33, 2075. [Google Scholar] [CrossRef]
- Sultana, J.; Kazanas, D. Gauge choice in conformal gravity. Mon. Not. R. Astron. Soc. (MNRAS) 2017, 466, 4847. [Google Scholar] [CrossRef]
- Guenouche, M.; Zouzou, S.R. Deflection of light and time delay in closed Einstein-Straus solution. Phys. Rev. D 2018, 98, 123508. [Google Scholar] [CrossRef]
- Smail, I.; Ellis, R.; Fitchett, M.; Norgaard-Nielsen, H.; Hansen, L.; Jorgensen, H. A statistically complete survey for arc-like features in images of distant rich clusters of galaxies. Mon. Not. R. Astron. Soc. (MNRAS) 1991, 252, 19. [Google Scholar] [CrossRef]
- Allen, S. Resolving the discrepancy between X-ray and gravitational lensing mass measurements for clusters of galaxies. Mon. Not. R. Astron. Soc. (MNRAS) 1998, 296, 392. [Google Scholar] [CrossRef]
- The Planch Collaboration Planck 2018 results VI. Cosmological parameters. Astro. Astrophys. 2020, 641, A6.
- Einstein, A.; Straus, G.E. The influence of the expansion of space on the gravitation fields surrounding the individual stars. Rev. Mod. Phys. 1945, 17, 120. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Garipova, G.M.; Laserra, E.; Bhadra, A.; Nandi, K.M. The vacuole model: New terms in the second order deflection of light. J. Cosmol. Astropart. Phys. (JCAP) 2011, 2, 28. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sultana, J. Gravitational Light Bending in Weyl Gravity and Schwarzschild–de Sitter Spacetime. Symmetry 2024, 16, 101. https://doi.org/10.3390/sym16010101
Sultana J. Gravitational Light Bending in Weyl Gravity and Schwarzschild–de Sitter Spacetime. Symmetry. 2024; 16(1):101. https://doi.org/10.3390/sym16010101
Chicago/Turabian StyleSultana, Joseph. 2024. "Gravitational Light Bending in Weyl Gravity and Schwarzschild–de Sitter Spacetime" Symmetry 16, no. 1: 101. https://doi.org/10.3390/sym16010101
APA StyleSultana, J. (2024). Gravitational Light Bending in Weyl Gravity and Schwarzschild–de Sitter Spacetime. Symmetry, 16(1), 101. https://doi.org/10.3390/sym16010101