Coefficient Inequalities and Fekete–Szegö-Type Problems for Family of Bi-Univalent Functions
Abstract
:1. Introduction
2. The Main Results of Function Class e
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in < 1. Arch. Rational Mech. Anal. 1969, 32, 100–112. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef]
- Yousef, F.; Alroud, S.; Illafe, M. A comprehensive subclass of bi-univalent functions associated with Chebyshev polynomials of the second kind. Bol. Soc. Mat. Mex. 2020, 26, 329–339. [Google Scholar] [CrossRef]
- Bulut, S. Coefficient estimates for a class of analytic and bi-univalent functions. Novi Sad J. Math. 2013, 43, 59–65. [Google Scholar]
- Illafe, M.; Yousef, F.; Haji Mohd, M.; Supramaniam, S. Initial Coefficients Estimates and Fekete–Szegö Inequality Problem for a General Subclass of Bi-Univalent Functions Defined by Subordination. Axioms 2023, 12, 235. [Google Scholar] [CrossRef]
- Sakar, F.M.; Wanas, A.K. Upper Bounds for Initial Taylor-Maclaurin Coefficients of New Families of Bi-Univalent Functions. Int. J. Open Probl. Complex Anal. 2023, 15, 17–25. [Google Scholar]
- Fekete, M.; Szegö, G. Eine bemerkung uber ungerade schlichte funktionen. J. Lond. Math. Soc. 1933, 2, 85–89. [Google Scholar] [CrossRef]
- Abirami, C.; Magesh, N.; Yamini, J. Initial bounds for certain classes of bi-univalent functions defined by Horadam Polynomials. Abstr. Appl. Anal. 2020, 2020, 7391058. [Google Scholar] [CrossRef]
- Amourah, A.; Al-Hawary, T.; Frasin, B.A. Application of Chebyshev polynomials to certain class of bi-Bazilevič functions of order α + iβ. Afr. Mat. 2021, 32, 1059–1066. [Google Scholar] [CrossRef]
- Swamy, S.R.; Bulut, S.; Sailaja, Y. Some special families of holomorphic and Sălăgean type bi-univalent functions associated with Horadam polynomials involving modified sigmoid activation function. Hacet. J. Math. Stat. 2021, 50, 710–720. [Google Scholar] [CrossRef]
- Swamy, S.R.; Wanas, A.K.; Sailaja, Y. Some special families of holomorphic and Sălăgean type bi-univalent functions associated with (m,n)-Lucas polynomials. Commun. Math. Appl. 2020, 11, 1–12. [Google Scholar]
- Amourah, A.; Frasin, B.A.; Murugusundaramoorthy, G.; Al-Hawary, T. Bi-Bazilevič functions of order ϑ + iδ associated with (p; q)-Lucas polynomials. AIMS Math. 2021, 6, 4296–4305. [Google Scholar] [CrossRef]
- Alsoboh, A.; Darus, M. Certain subclass of Meromorphic Functions involving q-Ruscheweyh differential operator. Transylv. J. Mech. Math. 2019, 11, 10–18. [Google Scholar]
- Yousef, F.; Alroud, S.; Illafe, M. New subclasses of analytic and bi-univalent functions endowed with coefficient estimate problems. Anal. Math. Phys. 2010, 11, 58. [Google Scholar] [CrossRef]
- Adil Khan, M.; Sohail, A.; Ullah, H.; Saeed, T. Estimations of the Jensen Gap and Their Applications Based on 6-Convexity. Mathematics 2023, 11, 1957. [Google Scholar] [CrossRef]
- Zhao, T.H.; Shi, L.; Chu, Y.M. Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A MatemáTicas 2020, 114, 1–14. [Google Scholar] [CrossRef]
- Zhao, T.H.; Wang, M.K.; Chu, Y.M. Concavity and bounds involving generalized elliptic integral of the first kind. J. Math. Inequal. 2021, 15, 701–724. [Google Scholar] [CrossRef]
- Brannan, D.A.; Clunie, J.G. Aspects of Contemporary Complex Analysis. In Proceedings of the NATO Advanced Study Institute, University of Durham, Durham, UK, 1–20 July 1979; Academic Press: New York, NY, USA; London, UK, 1980. [Google Scholar]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Yousef, F.; Amourah, A.; Frasin, B.A. An avant-Garde construction for subclasses of analytic bi-univalent functions. Axioms 2022, 11, 267. [Google Scholar] [CrossRef]
- Attiya, A.A.; Ibrahim, R.W.; Albalahi, A.M.; Ali, E.E.; Bulboaca, T. A differential operator associated with q-Raina function. Symmetry 2022, 14, 1518. [Google Scholar] [CrossRef]
- Amourah, A.; Frasin, B.A.; Seoudy, T.M. An Application of Miller–Ross-Type Poisson Distribution on Certain Subclasses of Bi-Univalent Functions Subordinate to Gegenbauer Polynomials. Mathematics 2022, 10, 2462. [Google Scholar] [CrossRef]
- Al-Hawary, T.; Amourah, A.; Alsoboh, A.; Alsalhi, O. A new comprehensive subclass of analytic bi-univalent functions related to gegenbauer polynomials. Symmetry 2023, 15, 576. [Google Scholar] [CrossRef]
- Sakar, F.M. On Sense of Yamakawa family of meromorphic bi-univalent and bi-subordinate functions. Turk. J. Math. 2021, 45, 1887–1898. [Google Scholar] [CrossRef]
- Alamoush, A.G. On subclass of analytic bi-close-to-convex functions. Int. J. Open Probl. Complex Anal. 2021, 13, 10–18. [Google Scholar]
- Kota, W.Y.; El-Ashwah, R.M. Some Geometric Properties for Certain Subclasses of p-Valent Functions Involving Differ-Integral Operator. Int. J. Open Probl. Complex Anal. 2022, 14, 2–15. [Google Scholar]
- Al-Kaseasbeh, M. Construction of Differential Operators. Int. J. Open Probl. Complex Anal. 2021, 13, 29–43. [Google Scholar]
- AlAmoush, A.G.; Wanas, A.K. Coefficient estimates for a new subclass of bi-close-to-convex functions associated with the Horadam polynomials. Int. J. Open Probl. Complex Anal. 2022, 14, 16–26. [Google Scholar]
- Narender, K.; Krishna, D.M.; Reddy, P.T. Univalence Criteria For Analytic Functions Defined By Differential Operator. Int. J. Open Probl. Complex Anal. 2022, 14, 54–60. [Google Scholar]
- Wloch, A.; Wolowiec-Musial, M. On generalized telephone number, their interpretations and matrix generators. Util. Math. 2017, 10, 531–539. [Google Scholar]
- Bednarz, U.; Wolowiec-Musial, M. On a new generalization of telephone numbers. Turk. J. Math. 2019, 43, 1595–1603. [Google Scholar] [CrossRef]
- Deniz, E. Sharp coefficient bounds for starlike functions associated with generalized telephone numbers. Bull. Malays. Math. Sci. Soc. 2021, 44, 1525–1542. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions. In Grundlehren der Mathematischen Wissenschaften, Band 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Hawary, T.; Amourah, A.; Almutairi, H.; Frasin, B. Coefficient Inequalities and Fekete–Szegö-Type Problems for Family of Bi-Univalent Functions. Symmetry 2023, 15, 1747. https://doi.org/10.3390/sym15091747
Al-Hawary T, Amourah A, Almutairi H, Frasin B. Coefficient Inequalities and Fekete–Szegö-Type Problems for Family of Bi-Univalent Functions. Symmetry. 2023; 15(9):1747. https://doi.org/10.3390/sym15091747
Chicago/Turabian StyleAl-Hawary, Tariq, Ala Amourah, Hasan Almutairi, and Basem Frasin. 2023. "Coefficient Inequalities and Fekete–Szegö-Type Problems for Family of Bi-Univalent Functions" Symmetry 15, no. 9: 1747. https://doi.org/10.3390/sym15091747
APA StyleAl-Hawary, T., Amourah, A., Almutairi, H., & Frasin, B. (2023). Coefficient Inequalities and Fekete–Szegö-Type Problems for Family of Bi-Univalent Functions. Symmetry, 15(9), 1747. https://doi.org/10.3390/sym15091747