Tachyonic Neutrinos: From the Cosmic Rays to Extragalactic Supernovae
Abstract
:1. Neutrinos as Tachyons?
2. Cosmic Ray Evidence for
2.1. Explaining the Knees
2.2. Explaining the Ankle
2.3. Composition of the Cosmic Rays
2.4. IceCube Data and Neutrons?
2.5. Leptonic Cosmic Rays: e and
3. Wanted: A New Neutrino Model
3.1. The Tachyonic Neutrino Model
3.2. Origin of Model from SN 1987A Data
3.3. Statistical Significance of Finding Three Masses
3.4. Initial Rejection of Mont Blanc Burst
3.5. Evidence for an 8 MeV Neutrino Line
4. Extragalactic Supernova Bursts
4.1. Search for a Day-Long Burst
4.2. Observing Hypernovae at 4.81 Mly?
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. More Support for the Explanation of the Ankle
References
- Bilaniuk, O.M.P.; Deshpande, V.K.; Sudarshan, E.C.G. “Meta” relativity. Am. J. Phys. 1962, 30, 718. [Google Scholar] [CrossRef]
- Cawley, R.G. Neutrino mass bounds. Lett. Nuovo C 1972, 3, 523–525. [Google Scholar] [CrossRef]
- Chodos, A.; Hauser, A.I.; Kostelecký, V.A. The neutrino as a tachyon. Phys. Lett. B 1985, 150B, 6. [Google Scholar] [CrossRef]
- Ehrlich, R. A Review of Searches for Evidence of Tachyons. Symmetry 2022, 14, 1198. [Google Scholar] [CrossRef]
- Particle Data Group; Workman, R.L.; Burkert, V.D.; Crede, V.; Klempt, E.; Thoma, U.; Tiator, L.; Agashe, K.; Aielli, G.; Allanach, B.C.; et al. Review of Particle Properties. Prog. Theor. Exp. Phys. 2022, 2022, 083C01. [Google Scholar]
- Aleph Collaboration; Barate, R. An upper limit on the tau neutrino mass from three- and five-prong tau decays. Eur. Phys. J. C 1998, 2, 395–406. [Google Scholar] [CrossRef]
- Natarajan, A.; Zentner, A.R.; Battaglia, N.; Trac, H. Systematic errors in the measurement of neutrino masses due to baryonic feedback processes: Prospects for stage IV lensing surveys. Phys. Rev. D 2014, 90, 063516. [Google Scholar] [CrossRef]
- Chodos, A. Tachyons as a Consequence of Light-Cone Reflection Symmetry. Symmetry 2022, 14, 1947. [Google Scholar] [CrossRef]
- Nicasio, J.; Jentschura, U. Dispersion of Ultrarelativistic Tardyonic and Tachyonic Wave Packets on Cosmic Scales. Symmetry 2022, 14, 2596. [Google Scholar] [CrossRef]
- Rembieliński, J.; Caban, P.; Ciborowski, J. Quantum field theory of space-like neutrino. Eur. Phys. J. C 2021, 81, 716. [Google Scholar] [CrossRef]
- Radzikowski, M. CPT and Lorentz Symmetry; World Scientific: Singapore, 2010; pp. 224–228. [Google Scholar]
- Schwartz, C. A Consistent Theory of Tachyons with Interesting Physics for Neutrinos. Symmetry 2022, 14, 1172. [Google Scholar] [CrossRef]
- Chodos, A.; Kostelecky, V.A.; Potting, R.; Gates, E. Null experiments for neutrino masses. Mod. Phys. Lett. A 1992, 7, 467–476. [Google Scholar] [CrossRef]
- Ehrlich, R. Implications for the cosmic ray spectrum of a negative electron neutrino mass. Phys. Rev. D 1999, 60, 17302. [Google Scholar] [CrossRef]
- Abassi, R.U. The Cosmic Ray Energy Spectrum between 2 PeV and 2 EeV Observed with the TALE Detector in Monocular Mode. ApJ 2018, 865, 74. [Google Scholar] [CrossRef]
- Ehrlich, R. Is There a 4.5 PeV Neutron Line in the Cosmic Ray Spectrum? Phys. Rev. D 1999, 60, 73005. [Google Scholar] [CrossRef]
- Greisen, K. End to the cosmic-ray spectrum? Phys. Rev. Lett. 1966, 16, 748–750. [Google Scholar] [CrossRef]
- Zatsepin, G.T.; Kuz’min, V.A. Upper limit of the spectrum of cosmic rays. J. Exp. Theor. Phys. Lett. 1966, 4, 78–80. [Google Scholar]
- Tully, R.B.; Courtois, H.; Hoffman, Y.; Pomerede, D. The Laniakea supercluster of galaxies. Nature 2014, 513, 71–73. [Google Scholar] [CrossRef]
- Arsene, N. Cosmic ray mass composition at the knee using azimuthal fluctuations of air shower particles detected at ground by the KASCADE experiment, submitted to JCAP. arXiv 2023, arXiv:2303.09889. [Google Scholar]
- Plum, M.; The IceCube Collaboration. Measurements of Cosmic Ray Mass Composition with the IceCube Neutrino Observatory. EPJ Web Conf. 2023, 283, 02007. [Google Scholar] [CrossRef]
- Mollerach, S.; Roulet, E. Ultrahigh energy cosmic rays from a nearby extragalactic source in the diffusive regime. Phys. Rev. D 2019, 99, 103010. [Google Scholar] [CrossRef]
- Ehrlich, R. Possible evidence for a 5.86 PeV cosmic ray enhancement. arXiv 2014, arXiv:1307.3944. [Google Scholar]
- Aartsen, M.G.; The IceCube Collaboration. Observation of cosmic ray anisotropy with nine years of IceCube data. In Proceedings of the Science, 32nd Cosmic Ray Conference, Berlin, Germany, 23 July 2021. [Google Scholar]
- Ahlers, M.; Metsch, P. Origin of small-scale anisotropies in Galactic cosmic rays. Prog. Part. Nucl. Phys. 2017, 94, 184–216. [Google Scholar] [CrossRef]
- Neronov, A.; Semikoz, D. Possibility of measurement of cosmic ray electron spectrum up to 100 TeV with two-layer water Cherenkov detector array. arXiv 2021, arXiv:2102.08456. [Google Scholar]
- Jentschura, U.; Ehrlich, R. Lepton-pair Cerenkov radiation emitted by tachyonic neutrinos: Lorentz-covariant approach and IceCube data. Adv. High Energy Phys. 2016, 2016, 4764981. [Google Scholar] [CrossRef]
- Ehrlich, R. Tachyonic neutrinos and the neutrino masses. Astropart. Phys. 2013, 41, 1–6. [Google Scholar] [CrossRef]
- Ehrlich, R. The Mont Blanc neutrinos from SN 1987A: Could they have been monochromatic (8 MeV) tachyons. Astropart. Phys. 2018, 99, 21–29. [Google Scholar] [CrossRef]
- Ehrlich, R. First results of the KATRIN neutrino mass experiment and their consistency with an exotic 3 + 3 model. arXiv 2019, arXiv:1910.06158. [Google Scholar] [CrossRef]
- Vissani, F.; Rosso, A.G. On the time distribution of supernova antineutrino flux. Symmetry 2021, 13, 1851. [Google Scholar] [CrossRef]
- Ehrlich, R. Evidence for two neutrino mass eigenstates from SN 1987A and the possibility of superluminal neutrinos. Astropart. Phys. 2012, 35, 625–628. [Google Scholar] [CrossRef]
- Hirata, K.; Kajita, T.; Koshiba, M.; Nakahata, M.; Oyama, Y.; Sato, N.; Suzuki, A.; Takita, M.; Totsuka, Y.; Kifune, T.; et al. Kamiokande result on a neutrino burst from the supernova SN 1987a. Phys. Rev. D 1988, 38, 448–458. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.L.; Fornal, B.; Galon, I.; Gardner, S.; Smolinsky, J.; Tait, T.M.; Tanedo, P. Protophobic Fifth-Force Interpretation of the Observed Anomaly in Nuclear Transitions. Phys. Rev. Lett. 2016, 117, 071803. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, R. 5 Reasons to expect an 8 MeV line in the SN 1987A neutrino spectrum. arXiv 2021, arXiv:2101.08128. [Google Scholar] [CrossRef]
- Fayette, P.; Hooper, D.; Sigl, G. Constraints on light dark matter from core collapse supernovae. Phys. Rev. Lett. 2006, 96, 211302. [Google Scholar] [CrossRef] [PubMed]
- Mori1, M.; Abe, K.; Hayato, Y.; Hiraide, K.; Ieki, K.; Ikeda, M.; Imaizumi, S.; Kameda, J.; Kanemura, Y.; Kaneshima, R.; et al. Searching for Supernova Bursts in Super-Kamiokande IV. Astrophys. J. 2022, 938, 35. [Google Scholar]
- Vigorito, C.; Bruno, G.; Fulgione, W.; Molinario, A. Supernova Neutrinos search with the LVD experiment: The 2019 update. In Proceedings of the 36th International Cosmic Ray Conference, ICRC, Madison, WI, USA, 24 July 2019. [Google Scholar]
- Kochkarov, M.M.; Boliev, M.M.; Dzaparova, I.M.; Kurenya, A.N.; Novoseltsev, Y.F.; Novoseltseva, R.V.; Petkov, V.B.; Striganov, P.S.; Yanin, A.F. The Search for Neutrino Bursts at the Baksan Underground Scintillation Telescope: 37 Years of Exposure. Bull. Russ. Acad. Sci. Phys. 2019, 83, 923–926. [Google Scholar] [CrossRef]
- Bloom, J.S. The Host Galaxy of GRB 970508. Astrophys. J. 1998, 507, L25–L28. [Google Scholar] [CrossRef]
- Podsiadlowski, P.; Mazzali, P.A.; Nomoto, K.; Lazzati, D.; Cappellaro, E. The rates of hypernovae and gamma-ray bursts: Implications for their progenitors. Astrophys. J. 2004, 607, L17. [Google Scholar] [CrossRef]
- Suzuki, Y. Superkamiokande Collaboration, The Super-Kamiokande experiment. Eur. Phys. J. C 2019, 79, 298. [Google Scholar] [CrossRef]
- Allard, D.; Aublin, J.; Baret, B.; Parizot, E. What can be learnt from UHECR anisotropies observations. Astron. Astrophys. 2022, 664, A120. [Google Scholar] [CrossRef]
Detectability of Supernova Neutrinos | |||
---|---|---|---|
SN/HN | SK/HK | 10 s/ 1 Day | r in Mly |
SN | SK | 10 s | 0.34 |
SN | HK | 10 s | 0.72 |
HN | SK | 10 s | 1.08 |
SN | SK | 1 day | 1.52 |
HN | HK | 10 s | 2.27 |
SN | HK | 1 day | 3.22 |
HN | SK | 1 day | 4.81 |
HN | HK | 1 day | 10.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ehrlich, R. Tachyonic Neutrinos: From the Cosmic Rays to Extragalactic Supernovae. Symmetry 2023, 15, 1624. https://doi.org/10.3390/sym15091624
Ehrlich R. Tachyonic Neutrinos: From the Cosmic Rays to Extragalactic Supernovae. Symmetry. 2023; 15(9):1624. https://doi.org/10.3390/sym15091624
Chicago/Turabian StyleEhrlich, Robert. 2023. "Tachyonic Neutrinos: From the Cosmic Rays to Extragalactic Supernovae" Symmetry 15, no. 9: 1624. https://doi.org/10.3390/sym15091624
APA StyleEhrlich, R. (2023). Tachyonic Neutrinos: From the Cosmic Rays to Extragalactic Supernovae. Symmetry, 15(9), 1624. https://doi.org/10.3390/sym15091624