New Results on a Fractional Integral of Extended Dziok–Srivastava Operator Regarding Strong Subordinations and Superordinations
Abstract
:1. Introduction
2. Main Results
2.1. Strong Differential Subordination
2.2. Strong Differential Superordination
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Antonino, J.A.; Romaguera, S. Strong differential subordination to Briot-Bouquet differential equations. J. Differ. Equ. 1994, 114, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.S.; Mocanu, P.T. Second order-differential inequalities in the complex plane. J. Math. Anal. Appl. 1978, 65, 298–305. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.S.; Mocanu, P.T. Differential subordinations and univalent functions. Mich. Math. J. 1981, 28, 157–171. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential subordinations. In Theory and Applications; Marcel Dekker, Inc.: New York, NY, USA; Basel, Switzerland, 2000. [Google Scholar]
- Oros, G.I.; Oros, G. Strong differential subordination. Turk. J. Math. 2009, 33, 249–257. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Subordinations of differential superordinations. Complex Var. 2003, 48, 815–826. [Google Scholar] [CrossRef]
- Oros, G.I. Strong differential superordination. Acta Univ. Apulensis 2009, 19, 101–106. [Google Scholar]
- Oros, G.; Tăut, A.O. Best subordinants of the strong differential superordination. Hacet. J. Math. Stat. 2009, 38, 293–298. [Google Scholar]
- Jeyaraman, M.P.; Suresh, T.K. Strong differential subordination and superordination of analytic functions. J. Math. Anal. Appl. 2012, 385, 854–864. [Google Scholar] [CrossRef] [Green Version]
- Cho, N.E.; Kwon, O.S.; Srivastava, H.M. Strong differential subordination and superordination for multivalently meromorphic functions involving the Liu–Srivastava operator. Integral Transform. Spec. Funct. 2010, 21, 589–601. [Google Scholar] [CrossRef]
- Tăut, A.O. Some strong differential subordinations obtained by Sălăgean differential operator. Stud. Univ. Babeş-Bolyai Math. 2010, 55, 221–228. [Google Scholar]
- Şendruţiu, R. Strong differential subordinations obtained by Ruscheweyh operator. J. Comput. Anal. Appl. 2012, 14, 328–340. [Google Scholar]
- Alb Lupaş, A. Certain strong differential subordinations using Sălăgean and Ruscheweyh operators. Adv. Appl. Math. Anal. 2011, 6, 27–34. [Google Scholar]
- Cho, N.E. Strong differential subordination properties for analytic functions involving the Komatu integral operator. Bound. Value Probl. 2013, 2013, 44. [Google Scholar] [CrossRef] [Green Version]
- Jeyaramana, M.P.; Suresh, T.K.; Keshava Reddy, E. Strong differential subordination and superordination of analytic functions associated with Komatu operator. Int. J. Nonlinear Anal. Appl. 2013, 4, 26–44. [Google Scholar]
- Alb Lupaş, A. On special strong differential subordinations using multiplier transformation. Appl. Math. Lett. 2012, 25, 624–630. [Google Scholar] [CrossRef] [Green Version]
- Swamy, S.R. Some strong differential subordinations using a new generalized multiplier transformation. Acta Univ. Apulensis 2013, 34, 285–291. [Google Scholar]
- Andrei, L.; Choban, M. Some strong differential subordinations using a differential operator. Carpathian J. Math. 2015, 31, 143–156. [Google Scholar] [CrossRef]
- Oshah, A.; Darus, M. Strong differential subordination and superordination of new generalized derivative operator. Korean J. Math. 2015, 23, 503–519. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Wanas, A.K. Strong differential sandwich results of λ-pseudo-starlike functions with respect to symmetrical points. Math. Morav. 2019, 23, 45–58. [Google Scholar] [CrossRef] [Green Version]
- Wanas, A.K.; Majeed, A.H. New strong differential subordination and superordination of meromorphic multivalent quasi-convex functions. Kragujev. J. Math. 2020, 44, 27–39. [Google Scholar] [CrossRef]
- Abd, E.H.; Atshan, W.G. Strong subordination for p-valent functions involving a linear operator. J. Phys. Conf. Ser. 2021, 1818, 012113. [Google Scholar] [CrossRef]
- Aghalary, R.; Arjomandinia, P. On a first order strong differential subordination and application to univalent functions. Commun. Korean Math. Soc. 2022, 37, 445–454. [Google Scholar] [CrossRef]
- Amsheri, S.M.; Zharkova, V. Some strong differential subordinations obtained by fractional derivative operator. Int. J. Math. Anal. 2012, 6, 2159–2172. [Google Scholar]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Ghanim, F.; Al-Janaby, H.F.; Al-Momani, M.; Batiha, B. Geometric studies on Mittag-Leffler type function involving a new integrodifferential operator. Mathematics 2022, 10, 3243. [Google Scholar] [CrossRef]
- Ghanim, F.; Bendak, S.; Al Hawarneh, A. Supplementary material from “Certain implementations in fractional calculus operators involving Mittag-Leffler-confluent hypergeometric functions”. R. Soc. 2022, 478, 20210839. [Google Scholar] [CrossRef]
- Ghanim, M.A.; Ghanim, F.; Botmart, T.; Bazighifan, O.; Askar, S. Qualitative analysis of Langevin integro-fractional differential equation under Mittag–Leffler functions power law. Fractal Fract. 2021, 5, 266. [Google Scholar] [CrossRef]
- Ghanim, F.; Al-Janaby, H.F.; Bazighifan, O. Some new extensions on fractional differential and integral properties for Mittag-Leffler confluent hypergeometric function. Fractal Fract. 2021, 5, 143. [Google Scholar] [CrossRef]
- Ghanim, F.; Al-Janaby, H.F. An analytical study on Mittag-Leffler-confluent hypergeometric functions with fractional integral operator. Math. Methods Appl. Sci. 2021, 44, 3605–3614. [Google Scholar] [CrossRef]
- Ghanim, F.; Al-Janaby, H.F. Some analytical merits of Kummer-type function associated with Mittag-Leffler parameters. Arab. J. Basic Appl. Sci. 2021, 28, 255–263. [Google Scholar] [CrossRef]
- Al-Ghafri, K.S.; Alabdala, A.T.; Redhwan, S.S.; Bazighifan, O.; Ali, A.H.; Iambor, L.F. Symmetrical solutions for non-local fractional integro-differential equations via Caputo–Katugampola derivatives. Symmetry 2023, 15, 662. [Google Scholar] [CrossRef]
- Alb Lupaş, A. Other subordination results for fractional integral associated with Dziok-Srivastava operator. J. Adv. Appl. Comput. Math. 2019, 6, 19–21. [Google Scholar] [CrossRef]
- Oros, G.I. On a new strong differential subordination. Acta Univ. Apulensis 2012, 32, 243–250. [Google Scholar]
- Alb Lupaş, A.; Oros, G.I.; Oros, G. On special strong differential subordinations using Sălăgean and Ruscheweyh operators. J. Comput. Anal. Appl. 2012, 14, 266–270. [Google Scholar]
- Alb Lupaş, A. On special strong differential superordinations using Sălăgean and Ruscheweyh operators. J. Adv. Appl. Comput. Math. 2014, 1, 28–34. [Google Scholar] [CrossRef]
- Alb Lupaş, A.; Oros, G.I. Strong differential superordination results involving extended Salagean and Ruscheweyh operators. Mathematics 2021, 9, 2487. [Google Scholar] [CrossRef]
- Owa, S. On the distortion theorems I. Kyungpook Math. J. 1978, 18, 53–59. [Google Scholar]
- Owa, S.; Srivastava, H.M. Univalent and starlike generalized hypergeometric functions. Can. J. Math. 1987, 39, 1057–1077. [Google Scholar] [CrossRef]
- Dziok, J.; Srivastava, H.M. Classes of analytic functions associated with the generalized hypergeometric function. Appl. Math. Comput. 1999, 103, 1–13. [Google Scholar] [CrossRef]
- Dziok, J.; Srivastava, H.M. Certain subclasses of analytic functions associated with the generalized hypergeometric function. Integral Transform. Spec. Funct. 2003, 14, 7–18. [Google Scholar] [CrossRef]
- Dziok, J.; Srivastava, H.M. Some subclasses of analytic functions with fixed argument of coefficients associated with the generalized hypergeometric function. Adv. Stud. Contemp. Math. 2002, 5, 115–125. [Google Scholar]
- Dziok, J. On some applications of the Briot–Bouquet differential subordination. J. Math. Anal. Appl. 2007, 328, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Dziok, J. Some relations including various linear operators. Demonstratio Math. 2007, 40, 77–84. [Google Scholar] [CrossRef]
- Liu, J.-L.; Srivastava, H.M. Certain properties of the Dziok–Srivastava operator. Appl. Math. Comput. 2004, 159, 485–493. [Google Scholar] [CrossRef]
- Sokol, J. On some applications of the Dziok–Srivastava operator. Appl. Math. Comput. 2008, 201, 774–780. [Google Scholar] [CrossRef]
- Oros, G.I.; Oros, G.; Kim, I.H.; Cho, N.E. Differential subordinations associated with the Dziok-Srivastava operator. Math. Rep. 2011, 1, 57–64. [Google Scholar]
- Alb Lupaş, A. Fuzzy differential subordination and superordination results for fractional integral associated with Dziok-Srivastava operator. Mathematics 2023, 11, 3129. [Google Scholar] [CrossRef]
- Oros, G.I.; Oros, G.; Preluca, L.F. Third-order differential subordinations using fractional integral of Gaussian hypergeometric function. Axioms 2023, 12, 133. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alb Lupaş, A. New Results on a Fractional Integral of Extended Dziok–Srivastava Operator Regarding Strong Subordinations and Superordinations. Symmetry 2023, 15, 1544. https://doi.org/10.3390/sym15081544
Alb Lupaş A. New Results on a Fractional Integral of Extended Dziok–Srivastava Operator Regarding Strong Subordinations and Superordinations. Symmetry. 2023; 15(8):1544. https://doi.org/10.3390/sym15081544
Chicago/Turabian StyleAlb Lupaş, Alina. 2023. "New Results on a Fractional Integral of Extended Dziok–Srivastava Operator Regarding Strong Subordinations and Superordinations" Symmetry 15, no. 8: 1544. https://doi.org/10.3390/sym15081544
APA StyleAlb Lupaş, A. (2023). New Results on a Fractional Integral of Extended Dziok–Srivastava Operator Regarding Strong Subordinations and Superordinations. Symmetry, 15(8), 1544. https://doi.org/10.3390/sym15081544