New Results on a Fractional Integral of Extended Dziok–Srivastava Operator Regarding Strong Subordinations and Superordinations
Abstract
1. Introduction
2. Main Results
2.1. Strong Differential Subordination
2.2. Strong Differential Superordination
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Antonino, J.A.; Romaguera, S. Strong differential subordination to Briot-Bouquet differential equations. J. Differ. Equ. 1994, 114, 101–105. [Google Scholar] [CrossRef][Green Version]
- Miller, S.S.; Mocanu, P.T. Second order-differential inequalities in the complex plane. J. Math. Anal. Appl. 1978, 65, 298–305. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential subordinations and univalent functions. Mich. Math. J. 1981, 28, 157–171. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential subordinations. In Theory and Applications; Marcel Dekker, Inc.: New York, NY, USA; Basel, Switzerland, 2000. [Google Scholar]
- Oros, G.I.; Oros, G. Strong differential subordination. Turk. J. Math. 2009, 33, 249–257. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Subordinations of differential superordinations. Complex Var. 2003, 48, 815–826. [Google Scholar] [CrossRef]
- Oros, G.I. Strong differential superordination. Acta Univ. Apulensis 2009, 19, 101–106. [Google Scholar]
- Oros, G.; Tăut, A.O. Best subordinants of the strong differential superordination. Hacet. J. Math. Stat. 2009, 38, 293–298. [Google Scholar]
- Jeyaraman, M.P.; Suresh, T.K. Strong differential subordination and superordination of analytic functions. J. Math. Anal. Appl. 2012, 385, 854–864. [Google Scholar] [CrossRef][Green Version]
- Cho, N.E.; Kwon, O.S.; Srivastava, H.M. Strong differential subordination and superordination for multivalently meromorphic functions involving the Liu–Srivastava operator. Integral Transform. Spec. Funct. 2010, 21, 589–601. [Google Scholar] [CrossRef]
- Tăut, A.O. Some strong differential subordinations obtained by Sălăgean differential operator. Stud. Univ. Babeş-Bolyai Math. 2010, 55, 221–228. [Google Scholar]
- Şendruţiu, R. Strong differential subordinations obtained by Ruscheweyh operator. J. Comput. Anal. Appl. 2012, 14, 328–340. [Google Scholar]
- Alb Lupaş, A. Certain strong differential subordinations using Sălăgean and Ruscheweyh operators. Adv. Appl. Math. Anal. 2011, 6, 27–34. [Google Scholar]
- Cho, N.E. Strong differential subordination properties for analytic functions involving the Komatu integral operator. Bound. Value Probl. 2013, 2013, 44. [Google Scholar] [CrossRef][Green Version]
- Jeyaramana, M.P.; Suresh, T.K.; Keshava Reddy, E. Strong differential subordination and superordination of analytic functions associated with Komatu operator. Int. J. Nonlinear Anal. Appl. 2013, 4, 26–44. [Google Scholar]
- Alb Lupaş, A. On special strong differential subordinations using multiplier transformation. Appl. Math. Lett. 2012, 25, 624–630. [Google Scholar] [CrossRef]
- Swamy, S.R. Some strong differential subordinations using a new generalized multiplier transformation. Acta Univ. Apulensis 2013, 34, 285–291. [Google Scholar]
- Andrei, L.; Choban, M. Some strong differential subordinations using a differential operator. Carpathian J. Math. 2015, 31, 143–156. [Google Scholar] [CrossRef]
- Oshah, A.; Darus, M. Strong differential subordination and superordination of new generalized derivative operator. Korean J. Math. 2015, 23, 503–519. [Google Scholar] [CrossRef][Green Version]
- Srivastava, H.M.; Wanas, A.K. Strong differential sandwich results of λ-pseudo-starlike functions with respect to symmetrical points. Math. Morav. 2019, 23, 45–58. [Google Scholar] [CrossRef]
- Wanas, A.K.; Majeed, A.H. New strong differential subordination and superordination of meromorphic multivalent quasi-convex functions. Kragujev. J. Math. 2020, 44, 27–39. [Google Scholar] [CrossRef]
- Abd, E.H.; Atshan, W.G. Strong subordination for p-valent functions involving a linear operator. J. Phys. Conf. Ser. 2021, 1818, 012113. [Google Scholar] [CrossRef]
- Aghalary, R.; Arjomandinia, P. On a first order strong differential subordination and application to univalent functions. Commun. Korean Math. Soc. 2022, 37, 445–454. [Google Scholar] [CrossRef]
- Amsheri, S.M.; Zharkova, V. Some strong differential subordinations obtained by fractional derivative operator. Int. J. Math. Anal. 2012, 6, 2159–2172. [Google Scholar]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Ghanim, F.; Al-Janaby, H.F.; Al-Momani, M.; Batiha, B. Geometric studies on Mittag-Leffler type function involving a new integrodifferential operator. Mathematics 2022, 10, 3243. [Google Scholar] [CrossRef]
- Ghanim, F.; Bendak, S.; Al Hawarneh, A. Supplementary material from “Certain implementations in fractional calculus operators involving Mittag-Leffler-confluent hypergeometric functions”. R. Soc. 2022, 478, 20210839. [Google Scholar] [CrossRef]
- Ghanim, M.A.; Ghanim, F.; Botmart, T.; Bazighifan, O.; Askar, S. Qualitative analysis of Langevin integro-fractional differential equation under Mittag–Leffler functions power law. Fractal Fract. 2021, 5, 266. [Google Scholar] [CrossRef]
- Ghanim, F.; Al-Janaby, H.F.; Bazighifan, O. Some new extensions on fractional differential and integral properties for Mittag-Leffler confluent hypergeometric function. Fractal Fract. 2021, 5, 143. [Google Scholar] [CrossRef]
- Ghanim, F.; Al-Janaby, H.F. An analytical study on Mittag-Leffler-confluent hypergeometric functions with fractional integral operator. Math. Methods Appl. Sci. 2021, 44, 3605–3614. [Google Scholar] [CrossRef]
- Ghanim, F.; Al-Janaby, H.F. Some analytical merits of Kummer-type function associated with Mittag-Leffler parameters. Arab. J. Basic Appl. Sci. 2021, 28, 255–263. [Google Scholar] [CrossRef]
- Al-Ghafri, K.S.; Alabdala, A.T.; Redhwan, S.S.; Bazighifan, O.; Ali, A.H.; Iambor, L.F. Symmetrical solutions for non-local fractional integro-differential equations via Caputo–Katugampola derivatives. Symmetry 2023, 15, 662. [Google Scholar] [CrossRef]
- Alb Lupaş, A. Other subordination results for fractional integral associated with Dziok-Srivastava operator. J. Adv. Appl. Comput. Math. 2019, 6, 19–21. [Google Scholar] [CrossRef]
- Oros, G.I. On a new strong differential subordination. Acta Univ. Apulensis 2012, 32, 243–250. [Google Scholar]
- Alb Lupaş, A.; Oros, G.I.; Oros, G. On special strong differential subordinations using Sălăgean and Ruscheweyh operators. J. Comput. Anal. Appl. 2012, 14, 266–270. [Google Scholar]
- Alb Lupaş, A. On special strong differential superordinations using Sălăgean and Ruscheweyh operators. J. Adv. Appl. Comput. Math. 2014, 1, 28–34. [Google Scholar] [CrossRef]
- Alb Lupaş, A.; Oros, G.I. Strong differential superordination results involving extended Salagean and Ruscheweyh operators. Mathematics 2021, 9, 2487. [Google Scholar] [CrossRef]
- Owa, S. On the distortion theorems I. Kyungpook Math. J. 1978, 18, 53–59. [Google Scholar]
- Owa, S.; Srivastava, H.M. Univalent and starlike generalized hypergeometric functions. Can. J. Math. 1987, 39, 1057–1077. [Google Scholar] [CrossRef]
- Dziok, J.; Srivastava, H.M. Classes of analytic functions associated with the generalized hypergeometric function. Appl. Math. Comput. 1999, 103, 1–13. [Google Scholar] [CrossRef]
- Dziok, J.; Srivastava, H.M. Certain subclasses of analytic functions associated with the generalized hypergeometric function. Integral Transform. Spec. Funct. 2003, 14, 7–18. [Google Scholar] [CrossRef]
- Dziok, J.; Srivastava, H.M. Some subclasses of analytic functions with fixed argument of coefficients associated with the generalized hypergeometric function. Adv. Stud. Contemp. Math. 2002, 5, 115–125. [Google Scholar]
- Dziok, J. On some applications of the Briot–Bouquet differential subordination. J. Math. Anal. Appl. 2007, 328, 295–301. [Google Scholar] [CrossRef]
- Dziok, J. Some relations including various linear operators. Demonstratio Math. 2007, 40, 77–84. [Google Scholar] [CrossRef]
- Liu, J.-L.; Srivastava, H.M. Certain properties of the Dziok–Srivastava operator. Appl. Math. Comput. 2004, 159, 485–493. [Google Scholar] [CrossRef]
- Sokol, J. On some applications of the Dziok–Srivastava operator. Appl. Math. Comput. 2008, 201, 774–780. [Google Scholar] [CrossRef]
- Oros, G.I.; Oros, G.; Kim, I.H.; Cho, N.E. Differential subordinations associated with the Dziok-Srivastava operator. Math. Rep. 2011, 1, 57–64. [Google Scholar]
- Alb Lupaş, A. Fuzzy differential subordination and superordination results for fractional integral associated with Dziok-Srivastava operator. Mathematics 2023, 11, 3129. [Google Scholar] [CrossRef]
- Oros, G.I.; Oros, G.; Preluca, L.F. Third-order differential subordinations using fractional integral of Gaussian hypergeometric function. Axioms 2023, 12, 133. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alb Lupaş, A. New Results on a Fractional Integral of Extended Dziok–Srivastava Operator Regarding Strong Subordinations and Superordinations. Symmetry 2023, 15, 1544. https://doi.org/10.3390/sym15081544
Alb Lupaş A. New Results on a Fractional Integral of Extended Dziok–Srivastava Operator Regarding Strong Subordinations and Superordinations. Symmetry. 2023; 15(8):1544. https://doi.org/10.3390/sym15081544
Chicago/Turabian StyleAlb Lupaş, Alina. 2023. "New Results on a Fractional Integral of Extended Dziok–Srivastava Operator Regarding Strong Subordinations and Superordinations" Symmetry 15, no. 8: 1544. https://doi.org/10.3390/sym15081544
APA StyleAlb Lupaş, A. (2023). New Results on a Fractional Integral of Extended Dziok–Srivastava Operator Regarding Strong Subordinations and Superordinations. Symmetry, 15(8), 1544. https://doi.org/10.3390/sym15081544