Results on Minkowski-Type Inequalities for Weighted Fractional Integral Operators
Abstract
:1. Introduction
2. Models Based upon Operators of Fractional Calculus
- Taking for all in Definition 7, we obtain Definition 6.
- Taking and for all in Definition 7, we obtain Definition 5.
- (I)
- Let . Then
- (II)
- Let and Then
- (III)
- For and we have
- (IV)
- For and we have
- (V)
- Taking and we have
- (VI)
- Choosing and we obtain
- (I)
- Taking and we have
- (II)
- For and we have
- (III)
- For and and we have
- (IV)
- For and we have
- (V)
- For , and we have
- (VI)
- For and we have
3. Main Results
4. A Set of Examples
5. Applications Involving the Digamma Functions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Tenreiro Machado, J.A.; Silva, M.F.; Barbosa, R.S.; Jesus, I.S.; Reis, C.M.; Marcos, M.G.; Galhano, A.F. Some applications of fractional calculus in engineering. Math. Prob. Eng. 2010, 2010, 639801. [Google Scholar]
- Scalas, E.; Gorenflo, R.; Mainardi, F. Fractional calculus and continuous-time finance. Phys. A Stat. Mech. Appl. 2000, 284, 376–384. [Google Scholar]
- Assaleh, K.; Ahmad, W.M. Modeling of speech signals using fractional calculus. In Proceedings of the 2007 9th International Symposium on Signal Processing and Its Applications, Sharjah, United Arab Emirates, 12–15 February 2007; IEEE: New York, NY, USA, 2007; pp. 1–4. [Google Scholar]
- Atanackovic, T.M.; Pilipovic, S.; Stankovic, B.; Zorica, D. Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Atanackovic, T.M.; Pilipovic, S.; Stankovic, B.; Zorica, D. Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Koeller, R. Applications of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 1984, 51, 299–307. [Google Scholar]
- Cai, Z.W.; Huang, J.H.; Huang, L.H. Periodic orbit analysis for the delayed Filippov system. Proc. Am. Math. Soc. 2018, 146, 4667–4682. [Google Scholar]
- Chen, T.; Huang, L.H.; Yu, P.; Huang, W.T. Bifurcation of limit cycles at infinity in piecewise polynomial systems. Nonlinear Anal. Real World Appl. 2018, 41, 82–106. [Google Scholar]
- Rahman, R.U.; Al-Maaitah, A.F.; Qousini, M.; Az-Zo’bi, E.A.; Eldin, S.M.; Abuzar, M. New soliton solutions and modulation instability analysis of fractional Huxley equation. Results Phys. 2023, 44, 106163. [Google Scholar]
- Ur Rahman, R.; Faridi, W.A.; El-Rahman, M.A.; Taishiyeva, A.; Myrzakulov, R.; Az-Zo’bi, E.A. The sensitive visualization and generalized fractional solitons’ construction for regularized long-wave governing model. Fractal Fract. 2023, 7, 136. [Google Scholar]
- Adjabi, Y.; Jarad, F.; Baleanu, D.; Abdeljawad, T. On Cauchy problems with Caputo-Hadamard fractional derivatives. Math. Meth. Appl. Sci. 2016, 40, 661–681. [Google Scholar]
- Zhou, X.S.; Huang, C.X.; Hu, H.J.; Liu, L. Inequality estimates for the boundedness of multilinear singular and fractional integral operators. J. Inequal. Appl. 2013, 2013, 303. [Google Scholar]
- Liu, F.W.; Feng, L.B.; Anh, V.; Li, J. Unstructured-mesh Galerkin finite element method for the two-dimensional multi-term time-space fractional Bloch–Torrey equations on irregular convex domains. Comput. Math. Appl. 2019, 78, 1637–1650. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Kashuri, A.; Sahoo, S.K.; Mohammed, P.O.; Al-Sarairah, E.; Hamed, Y.S. Some New Hermite-Hadamard Type Inequalities Pertaining to Fractional Integrals with an Exponential Kernel for Subadditive Functions. Symmetry 2023, 15, 748. [Google Scholar] [CrossRef]
- Anastassiou, G.A. Nabla discrete fractional calculus and nabla inequalities. Math. Comput. Model. 2010, 51, 562–571. [Google Scholar] [CrossRef] [Green Version]
- Zheng, B. Some new discrete fractional inequalities and their applications in fractional difference equations. J. Math. Inequal. 2015, 9, 823–839. [Google Scholar]
- Ahmad, B.; Alsaedi, A.; Kirane, M.; Torebek, B.T. Hermite–Hadamard, Hermite–Hadamard–Fejér, Dragomir–Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals. J. Comput. Appl. Math. 2019, 353, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Podlubny, I. Geometric and physical interpretations of fractional integration and differentiation. Fract. Calc. Appl. Anal. 2001, 5, 230–237. [Google Scholar]
- Baleanu, D.; Fernandez, A. On fractional operators and their classifications. Mathematics 2019, 7, 830. [Google Scholar]
- Hilfer, R.; Luchko, Y.F. Desiderata for fractional derivatives and integrals. Mathematics 2019, 7, 149. [Google Scholar]
- Böröcsky, K.J.; Hug, D. A reverse Minkowski-type inequality. Proc. Am. Math. Soc. 2020, 148, 4907–4922. [Google Scholar] [CrossRef]
- Benaissa, B. On the reverse Minkowski’s integral inequality. Kragujevac J. Math. 2022, 46, 407–416. [Google Scholar]
- Benaissa, B. A further generalization of the reverse Minkowski-type inequality via Hölder and Jensen inequalities. J. Sib. Fed. Univ. Math. Phys. 2022, 15, 319–328. [Google Scholar]
- Krasopoulos, P.T.; Bougoffa, L. Reverse Hölder and Minkowski-type inequalities for n functions. Austral. J. Math. Anal. Appl. 2022, 19, 9. [Google Scholar]
- Alsmeyer, G. Chebyshev’s Inequality. In International Encyclopedia of Statistical Science; Lovric, M., Ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2011. [Google Scholar]
- Chebyshev, P.L. Sur les expressions approximatives des integrales definies par les autres prises entre les mêmes limites. Proc. Math. Soc. Charkov 1882, 2, 93–98. [Google Scholar]
- Liu, Z. A variant of Chebyshev inequality with applications. J. Math. Inequal. 2013, 7, 551–561. [Google Scholar]
- Özdemir, M.E.; Set, E.; Akdemir, A.O.; Sarikaya, M.Z. Some new Chebyshev type inequalities for functions whose derivatives belongs to Lp spaces. Afr. Mat. 2015, 26, 1609–1619. [Google Scholar]
- Pachpatte, B.G. A note on Chebyshev-Grüss type inequalities for differential functions. Tamsui Oxf. J. Math. Sci. 2006, 22, 29–36. [Google Scholar]
- Set, E.; Kashuri, A.; Mumcu, İ. Chebyshev type inequalities by using generalized proportional Hadamard fractional integrals via Polya–Szegö inequality with applications. Chaos Solit. Fractals 2021, 146, 110860. [Google Scholar]
- Gardner, R.J. The Brunn-Minkowski inequality. Bull. Am. Math. Soc. 2002, 39, 355–405. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.J. Reverse Lp-dual Minkowski’s inequality. Differ. Geom. Appl. 2015, 40, 243–251. [Google Scholar] [CrossRef]
- Bennett, G.; Carbery, A.; Christ, M.; Tao, T. The Brascamp-Lieb inequalities: Finiteness, structure and extremals. Geom. Funct. Anal. 2008, 17, 1343–1415. [Google Scholar]
- Bobkov, S.G.; Ledoux, M. On modified logarithmic Sobolev inequalities for Bernoulli and Poisson measures. J. Funct. Anal. 2000, 171, 532–583. [Google Scholar]
- Jiao, Y.; Peng, L.; Xu, M. Reverse Minkowski inequality for risk measures. J. Optim. Theory Appl. 2017, 174, 232–244. [Google Scholar]
- Dahmani, Z. On Minkowski and Hermite–Hadamard integral inequalities via fractional integral. Ann. Funct. Anal. 2010, 1, 51–58. [Google Scholar] [CrossRef]
- Set, E.; Özdemir, M.; Dragomir, S.S. On the Hermite–Hadamard inequality and other integral inequalities involving two functions. J. Inequal. Appl. 2010, 2010, 148102. [Google Scholar] [CrossRef] [Green Version]
- Chinchane, V.L.; Pachpatte, D.B. New fractional inequalities via Hadamard fractional integral. Int. J. Funct. Anal. Oper. Theory Appl. 2013, 5, 165–176. [Google Scholar]
- Da C. Sousa, J.V.; Capelas de Oliveira, E. The Minkowski’s inequality by means of a generalized fractional integral. AIMS Ser. Appl. Math. 2018, 3, 131–147. [Google Scholar]
- Rahman, G.; Khan, A.; Abdeljawad, T.; Nisar, K.S. The Minkowski inequalities via generalized proportional fractional integral operators. Adv. Differ. Equ. 2019, 2019, 287. [Google Scholar] [CrossRef] [Green Version]
- Fox, C. The asymptotic expansion of generalized hypergeometric functions. Proc. Lond. Math. Soc. 1928, 27, 389–400. [Google Scholar]
- Wright, E.M. The asymptotic expansion of the generalized hypergeometric function. J. Lond. Math. Soc. 1935, 10, 286–293. [Google Scholar] [CrossRef]
- Srivastava, H.M. A survey of some recent developments on higher transcendental functions of analytic number theory and applied mathematics. Symmetry 2021, 13, 2294. [Google Scholar]
- Wright, E.M. The asymptotic expansion of integral functions defined by Taylor series. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1940, 238, 423–451. [Google Scholar]
- Srivastava, H.M.; Kashuri, A.; Mohammed, P.O.; Baleanu, D. Fractional integral inequalities for exponentially nonconvex functions and their applications. Fractal Fract. 2021, 5, 80. [Google Scholar] [CrossRef]
- Srivastava, H.M. An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions. J. Adv. Engrg. Comput. 2021, 5, 135–166. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations. J. Nonlinear Convex Anal. 2021, 22, 1501–1520. [Google Scholar]
- Sarikaya, M.Z.; Ertuğral, F. On the generalized Hermite–Hadamard inequalities. Ann. Univ. Craiova Math. Comput. Sci. Ser. 2020, 47, 193–213. [Google Scholar]
- Srivastava, H.M.; Kashuri, A.; Mohammed, P.O.; Nonlaopon, K. Certain inequalities pertaining to some new generalized fractional integral operators. Fractal Fract. 2021, 5, 160. [Google Scholar] [CrossRef]
- Liko, R.; Mohammed, P.O.; Kashuri, A.; Hamed, Y.S. Reverse Minkowski inequalities pertaining to new weighted generalized fractional integral operators. Fractal Fract. 2022, 6, 131. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Applied Mathematics Series 55; National Bureau of Standards: Washington, DC, USA, 1964; Dover Publications: New York, NY, USA, 1965. [Google Scholar]
- English, B.J.; Rousseau, G. Bounds for certain harmonic sums. J. Math. Anal. Appl. 1997, 206, 428–441. [Google Scholar] [CrossRef] [Green Version]
- Farhangdoost, M.R.; Dolatabadi, M.K. New inequalities for gamma and digamma functions. J. Appl. Math. 2014, 2014, 264652. [Google Scholar] [CrossRef]
- Pan, J.; Yang, S.; Wang, W. Reverse form of the Minkowski inequalities with applications. J. Math. Inequal. 2022, 16, 1051–1059. [Google Scholar] [CrossRef]
- Yewale, B.R.; Pachpatte, D.B. On some reverses of Minkowski’s, Hölder’s and Hardy’s type inequalities using ψ-fractional integral operators. South East Asian J. Math. Math. Sci. 2022, 18, 97–112. [Google Scholar]
- Zhao, C.-J.; Cheung, W.S. On reverse Hölder and Minkowski inequalities. Math. Slovaca 2020, 70, 821–828. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, H.M.; Sahoo, S.K.; Mohammed, P.O.; Kashuri, A.; Chorfi, N. Results on Minkowski-Type Inequalities for Weighted Fractional Integral Operators. Symmetry 2023, 15, 1522. https://doi.org/10.3390/sym15081522
Srivastava HM, Sahoo SK, Mohammed PO, Kashuri A, Chorfi N. Results on Minkowski-Type Inequalities for Weighted Fractional Integral Operators. Symmetry. 2023; 15(8):1522. https://doi.org/10.3390/sym15081522
Chicago/Turabian StyleSrivastava, Hari Mohan, Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Artion Kashuri, and Nejmeddine Chorfi. 2023. "Results on Minkowski-Type Inequalities for Weighted Fractional Integral Operators" Symmetry 15, no. 8: 1522. https://doi.org/10.3390/sym15081522